• Title/Summary/Keyword: 풍압중심

Search Result 19, Processing Time 0.026 seconds

Turbulent Flow Calculation around Yacht Sails (요트 세일 주위의 난류유동 계산)

  • Chi, Hye-Ryoun;Kim, Wu-Joan;Park, Jong-Hwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.2 s.152
    • /
    • pp.64-73
    • /
    • 2007
  • Turbulent flows around yacht sails were calculated to access the applicability of CFD for yacht design. Multi-block grid system was generated by using Gridgen package and Fluent was used to calculate flows around two sail system. A 30ft class sailing yacht designed and tested by KRISO was chosen. The interference effect between main and jib sails was analyzed. Pressure distribution on the sails was obtained and the center of effort was estimated. It was found that the jib angle affects the flow phenomena around a main sail due to the change of inflow angle. The location of center of effort is much different from the empirical formula based on a simple geometrical consideration. The calculated results are compared with the previous numerical and experimental results. Both CFD results are similar, but there are some discrepancies with experimental data. However, it is certain that CFD can be a very useful tool for yacht design.

A Study on the Sail Force Prediction Method for Hull Hydrodynamic Force Measurement of 30feet Catamaran Sailing Yacht (30ft급 쌍동형 세일링 요트의 선체 유체력 계측에 의한 세일력 추정방법에 관한 연구)

  • Jang, Ho-Yun;Park, Chung-Hwan;Kim, Hyen-Woo;Lee, Byung-Sung;Lee, In-Won
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.4
    • /
    • pp.477-486
    • /
    • 2010
  • During sailing by wind-driven thrust on the sail, a catamaran sailing yacht generates leeway and heeling. For predicting sail force, a model test was carried out according to running attitude. Through the model test, drag and side force of the real ship was predicted. A purpose of this study is to find sail force to C.E from changed attitude during running direction. By balance of hull and sail, a heeling force of designed sail is predicted. Also through heeling force and driving force, total sail force and direction from C.E are considered with changed mast including leeway and heeling.

Design of exhauster system for high efficiency drive(I) (배풍기 효율 최적화를 위한 시스템 설계(I))

  • Bae, Jinhwan;Ahn, Jinwoo
    • Proceedings of the KIPE Conference
    • /
    • 2017.07a
    • /
    • pp.280-281
    • /
    • 2017
  • 본 논문에서는 기존의 배풍기 효율을 높이고 크기를 줄이기 위해 임펠러의 속도를 높이는 설계에 관한 연구다. 임펠러 속도는 5500rpm으로 증가시키고 크기는 320mm에서 250mm로 줄였으며 효율과 최대 풍량을 향상키기기 위해 임펠러의 Hub/Tip 비율을 줄이며, 날개각도에 변화를 주는 방식을 제안한다. Hub/Tip 비율이 줄어들면 유량이 통과하는 면적이 넓어지게 되는 효과를 얻게 되고, 임펠러 중심거리에 따른 날개 각도를 변화시키면 풍압과 풍량이 달라지는 효과를 얻게 되어 동일한 rpm으로 회전하는 배풍기의 효율을 높일 수 있다. 설계된 구동용 SRM과 임펠러의 설계에 따른 운전 특성을 시뮬레이션을 통해 해석하고자 한다.

  • PDF

Design of Exhauster System for High Efficiency Drive(II) (배풍기 효율 최적화를 위한 시스템 설계(II))

  • Bae, Jinhwan;Ahn, Jinwoo;Lee, Dong-Hee
    • Proceedings of the KIPE Conference
    • /
    • 2017.11a
    • /
    • pp.81-82
    • /
    • 2017
  • 기존의 배풍기 효율을 높이기 위해서 모터와 제어방식 그리고 임펠러 형상에 변화를 주는 시스템 설계에 관한 연구다. 본 논문에서는 임펠러 속도는 5500rpm으로 증가시키고 크기는 320mm에서 250mm로 줄였으며 효율과 최대 풍량을 향상키기기 위해 임펠러의 Hub/Tip 비율을 줄이며, 날개각도에 변화를 주는 방식을 제안한다. 여기서 Hub/Tip 비율이 줄어들면 임펠러 날개의 면적이 늘어나 유량이 증가하게 되고, 임펠러 중심 거리에 따른 날개 각도를 변화시키면 배풍기 속도에 대한 풍압과 풍량이 달라져 배풍기의 효율을 높일 수 있다. 설계된 구동용 SRM과 임펠러의 설계에 따른 운전 특성을 시뮬레이션을 통해 해석하고자 한다.

  • PDF

A Study on Anchor holding power and Anchor holding Coefficient (Focus on Naval vessel) (묘(錨)의 파주력과 파주계수에 관한 고찰(해군 함정을 중심으로))

  • Lim, Bong-Taek;Kim, Byoung-Suk
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2013.06a
    • /
    • pp.23-24
    • /
    • 2013
  • 본 연구에서는 해군함정에서 투묘 시 함정별 묘의 파주계수와 그에 파주력 그리고 외력의 세기를 고려한 묘쇄의 적정 신출량을 구할 수 있는 수리모델을 정립하여 제시하고, 이것을 해군이 보유하고 있는 전 함정 승조원들로 하여금 쉽게 사용할 수 있는 적정 묘쇄 신출량을 그래프한 자료를 제시하였다. 본 연구 결과는 해군함정이 투묘시 바로 적용될 수 있을 뿐만 아니라, 이론적인 근거를 제공하는 참고자료로 유용하게 활용될 수 있을 것이다.

  • PDF

A Study on the Running Stability of the High-speed Train by Wind Pressure and Crossing (고속열차의 풍압 및 교행에 의한 주행안정성 연구)

  • Jeon, Chang-Sung;Yun, Su-Hwan;Kim, Seog-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.12
    • /
    • pp.880-887
    • /
    • 2020
  • This study was conducted to investigate the running stability of a high-speed train operated in a tunnel and an open field when external forces such as wind pressure and train crossings were applied to the vehicle. With no external force, the running stability at 400 km/h was examined, and the wheel weight reduction ratio, lateral pressure of the axles, and derailment coefficient satisfied the criteria of the technical standards for a high-speed train. When the distance between the centers of the tracks is 4.6 m, the external force caused by train crossing slightly affects the lateral acceleration of the vehicle but does not significantly affect the wheel weight reduction rate, lateral pressure, and derailment coefficient in a tunnel and open filed. When the distance is 4.6~5.0 m, the wheel weight reduction ratio, lateral pressure, and derailment coefficient satisfy the criteria with 20 m/s wind. When the wind speed was 30 m/s, the derailment coefficient satisfied the criteria, and the other variables exceeded them. It is predicted that a high-speed train can be operated safely at 400 km/h with wind speed of up to 20 m/s, and it should be slowed down at a wind speed of 30 m/s.

A Study to Improve the Operation Criteria by Size of Ship in Ulsan Tank Terminal (울산항 위험물 취급부두의 선박크기별 운용기준 개선방안에 관한 연구)

  • Kim, Seungyeon;Kim, Jongsung;Kim, Youngdu;Lee, Yunsok
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.6
    • /
    • pp.639-646
    • /
    • 2016
  • In order to establish an operational standard based on ship size, this study considered a specific safety management plan for Ulsan along with international standards, analyzed the results of mooring safety assessment at four vulnerable piers and suggests cargo stoppage and emergency unberthing standards as follows. In accordance with ship characteristics, ships of less than 10,000 tons are recommended to limit their activities for wind speeds of 18-21 m/s and wave heights of 1.0-1.5 m. Ships from 10,000-50,000 tons are recommended to observe wind speeds of 17-20 m/s and wave heights of 1.2-1.5 m, while, ships of 50,000-100,000 tons are recommended wind speeds of 15-19 m/s and wave heights of 1.5 m. Ships of more than 100,000 tons are recommended wind speeds of 14-18 m/s and wave heights of 1.5 m.

Standards for the Use of Tugboats owing to the Increase in the Size of Ships - Focusing on the Busan New Port - (선박 대형화에 따른 예선 사용 기준에 관한 연구 - 부산 신항을 중심으로 -)

  • Chang-Hyun Jung;Chol-Seong Kim;Yun-Sok Lee;Young-Soo Park
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.30 no.2
    • /
    • pp.157-164
    • /
    • 2024
  • In 2020, 24,000 TEU ultra-large container ships began arriving at the Busan New Port. In this study, the wind pressure and hydraulic force acting on the hull were calculated to obtain the horsepower required for the tugboats for safe berthing and unberthing of a 24,000 TEU ultra-large container ship at the Busan New Port. When the wind speed is 10 m/s (20 kts), 13,000 TEU container ships meet the tug horsepower standard of the current Busan port tugboat operation rules, but 16,000 TEU and 24,000 TEU container ships do not satisfy the regulations. Therefore, it was proposed to raise the standards for tugboat use by dividing the size of ships of "G/T 150,000 tons or more," which is the largest vessel under the current tugboat use standards, into two stages. Because 140,000 tons requires 12,100 horsepower, 170,000 tons requires 14,500 horsepower, and 230,000 tons requires 18,000 horsepower, the study proposed 16,000 horsepower for 150,000 to less than 200,000 tons and 18,000 horsepower for 200,000 tons or more for the use of tugboats.

A Study on Analysis Method for Performance Evaluation of Double-leaf facade of Office Building (업무용 건물의 이중외피 성능평가를 위한 해석기법의 고찰 - 이중외피 설계안의 에너지 저감 성능 및 환기성능을 중심으로 -)

  • Chung, Hwan-Kyo;Chung, Kwang-Seop;Lee, Yong-Jun;Shin, Seung-Chul;Kim, Young-Il
    • Journal of Energy Engineering
    • /
    • v.21 no.2
    • /
    • pp.168-178
    • /
    • 2012
  • The objective of this study is applied to office buildings to evaluate quantitative evaluation method about performance of double-skin at design stage to establish the basis for the purpose of evaluation performance. Select the evaluation building about design plan for applying the double-skin using the dynamic heat load analysis program the annual heating and cooling load of before and after the double-skin. Using CFD to analyze wind factor and applied ventilation for realistic results. Effects of double-skin to apply, and control techniques that can be done more realistically proposed through to set and control for shade control mode of ventilator and inside cavity wall of double-skin. Apply for the building the double-skin due to interpretation of the annual heating and cooling loads applied to interpret the quantitative effect confirmed the possibility. According to the form of a double skin was confirmed cavity environmental changes.