• Title/Summary/Keyword: 풍속비

Search Result 395, Processing Time 0.026 seconds

Influences of Ieodo Ocean Research Station on the Ambient Wind Field (이어도 해양과학기지가 주변 바람장에 미치는 영향)

  • 심재설;오병철;전인식
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.15 no.2
    • /
    • pp.138-142
    • /
    • 2003
  • Influences of Ieodo Ocean Research Station(IORS) on the ambient wind field were investigated through a wind tunnel experiment. To secure accurate wind speeds and directions, distortions due to the structure itself on which wind-measuring devices are to be installed should be taken into account. It was shown that the wind speed ratio was sensitive to wind direction and measuring position rather than approaching wind speed. The wind speed ratios measured at main wind tower were more than B .0 in every approaching direction, and the distortion of wind direction was under 6$^{\circ}$.

A Nonstationary Frequency Analysis of Extreme Wind Speed in Jeju using Bayesian Approach (베이지안 기법을 이용한 제주지역 극치풍속의 비정상성 빈도해석)

  • Kim, Kyoungmin;Kwon, Hyun-Han;Kwon, Soon-Duck
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.6
    • /
    • pp.667-673
    • /
    • 2019
  • Global warming may accelerate climate change and may increase disaster caused by strong winds. This research studied a method for a nonstationary frequency analysis considering the linear trend over time. The Bayesian method was used to estimate the posterior distribution of the parameters for the extreme value distribution of the annual maximum wind speed at Jeju Airport. The nonstationary frequency analysis was performed based on the Monte Carlo Markov Chain simulation and the Gibbs sampling. The estimated wind speeds by nonstationary frequency analysis was larger than those by stationary analysis. The conventional frequency analysis procedure assuming stationarity is likely to underestimate the future design wind speed in the region where statistically significant trend exists.

Load Ratio between Two Adjacent Wings of Load Cell Type Anemometer according to Wind Direction (풍향에 따른 로드 셀형 풍향풍속계의 인접한 두 날개 사이의 하중 비)

  • Han, Dong-Seop
    • Journal of Navigation and Port Research
    • /
    • v.36 no.5
    • /
    • pp.357-361
    • /
    • 2012
  • Anemometer is a meteorological instrument that measures wind direction and wind speed in real time, and is mounted to the cranes that are used at ports, shipbuilding yards, off-shore structure, or construction sites that are influenced by wind, and it is used in conjunction with the safety system. Load cell-type anemometer measures the wind direction through the ratio of load between 4 positions by mounting the thin plate to 4 load cells, and measures wind velocity through the summation of loads. In this study, we compared and analyzed the results in the theoretic approach, analytic approach and experimental approach to derive the correlation between load ratio and wind direction. Wind direction was selected as the design variable, and selected 9 wind direction conditions from $0^{\circ}{\sim}90^{\circ}$ with $11.25^{\circ}$ space for analysis, and 10 wind direction conditions with $10^{\circ}$ space for experiment.

Development of Load-Cell-Based Anemovane (로드셀형 풍향풍속계 개발)

  • Jeon, Byeong Ha;Han, Dong Seop;Lee, Kwon-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.5
    • /
    • pp.685-691
    • /
    • 2013
  • A load-cell-type anemovane operates based on wind vector properties. The developed load-cell-type anemovane is of a fixed type in which the wing does not rotate, unlike in the case of existing anemovanes. The load-cell-type anemovane is required to accurately derive the correlation between the load ratio and the wind direction in order to develop a qualified product. This is because the load ratio repeats every $90^{\circ}$ owing to the use of four load cells, and its value varies nonlinearly according to the wind direction. In this study, we compared analytical results with experimental results. Fluid analysis was carried out using ANSYS CFX. Furthermore, the prototype was tested using a self-manufactured wind tunnel. The wind direction was selected as the design variable. 13 selected wind direction conditions ranging from $0^{\circ}$ to $90^{\circ}$ with an interval of $7.5^{\circ}$ for analysis were defined. Furthermore, 10 wind direction conditions with an interval of $10^{\circ}$ for the experiment were defined. We derived the relations between the pressure ratio and the wind direction through the experiment and fluid analysis.

A Study on the Flight Initiation Wind Speed of Wind-Borne Debris (강풍에 의한 비산물의 비행 시작 풍속에 관한 연구)

  • Jeong, Houigab;Lee, Seungho;Park, Junhee;Kwon, Soon-duck
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.1
    • /
    • pp.105-110
    • /
    • 2020
  • This study provides a method and data for predicting the flight initiation wind speed of wind-borne debris. From the force equilibrium acting on debris including aerodynamic and inertia forces, the equation for predicting the flight initiation wind speeds are presented. Wind tunnel tests were carried out to provide necessary aerodynamic data in the equation for the debris with various aspect ratios. The proposed equation for flight initiation wind speeds was validated from free flying tests in the wind tunnel. The flights of debris were mostly initiated by slip when width to thickness was less than 10, otherwise overturning were dominant. The actual flight initiation speeds were lower than that of the computed ones. The surface boundary layer flow and the gap between the debris and surface might affect the prediction error.

A micro wind sensor fabricated using MEMS technology (MEMS 기술을 이용한 초소형 풍향 풍속 센서)

  • Yoo, Eun-Shil;Shin, Kyu-Sik;Cho, Nam-Kyu;Pak, Jung-Ho;Lee, Dae-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1468-1469
    • /
    • 2008
  • 기상관측 분야에서는 풍속센서의 소형화 요구가 커지고 있어 Air flow sensor를 이용한 MEMS(Micro Electro Mechanical System) 풍향 풍속센서의 응용연구가 활발하다. MEMS 풍향 풍속 센서는 수 mm 크기를 가지면서도 바람의 세기와 함께 방향을 측정하여야 하는데, 센서 칩이 노출되어 있어 외부환경으로부터 영향을 받기 때문에 센서소자의 내오염성과 내구성 확보가 중요하다. 따라서 본 연구에서는 절연막으로 비점착성의 테프론 막을 적용하여 외부환경으로부터 영향을 줄일 수 있는 열감지 방식의 MEMS 풍향 풍속 센서 칩을 제작하였다. 테프론 코팅막을 이용한 풍향 풍속 센서는 0.1m/s의 resolution을 가지며, 최대 15m/s까지 측정이 가능하여, 오염에 강하고 발수성을 센서를 제작하였다.

  • PDF

Derivation of Nacelle Transfer Function Using LiDAR Measurement (라이다(LiDAR) 측정을 이용한 나셀전달함수의 유도)

  • Kim, Hyun-Goo;Kang, Yong-Heack;Yun, Chang-Yeol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.9
    • /
    • pp.929-936
    • /
    • 2015
  • Nacelle anemometers are mounted on wind-turbine nacelles behind blade roots to measure the free-stream wind speed projected onto the wind turbine for control purposes. However, nacelle anemometers measure the transformed wind speed that is due to the wake effect caused by the blades' rotation and the nacelle geometry, etc. In this paper, we derive the Nacelle Transfer Function (NTF) to calibrate the nacelle wind speed to the free-stream wind speed, as required to carry out the performance test of wind turbines according to the IEC 61400-12-2 Wind-Turbine Standard. For the reference free-stream wind data, we use the Light Detection And Ranging (LiDAR) measurement at the Shinan wind power plant located on the Bigeumdo Island shoreline. To improve the simple linear regression NTF, we derive the multiple nonlinear regression NTF. The standard error of the wind speed was found to have decreased by a factor of 9.4, whereas the mean of the power-output residual distribution decreased by 6.5 when the 2-parameter NTF was used instead of the 1-parameter NTF.

Estimation of Basic Wind Speed at Bridge Construction Site Based on Short-term Measurements (단기 풍관측에 의한 교량현장 기본풍속 추정)

  • Lee, Seong-Lo;Kim, Sang-Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.4
    • /
    • pp.1271-1279
    • /
    • 2013
  • In this paper, a study on the prediction method of basic wind speed at the construction site of long-span bridge using short-term measurements was conducted. To determine the basic wind speed in the wind resistant design for the long-span bridge away from the weather station, statistical analysis of long-term data at site is required. Wind observation mast was installed at site, and short-term measurements were gathered and the correlation analysis between the site and the station was done using regression analysis and MCP(Measure-Correlate-Predict). The long-term wind data of the site was obtained from correlation formula after topographical revision of long-term data of the station. And basic wind speed could be estimated by extreme probability distribution analysis. The research results show that the wind speed by regression analysis is predicted lower than by MCP and after this study a series of correlation analyses at several sites will show clearly the difference two methods. And also a quality control of long-term wind data is very important in estimation of wind speed.

Simplified 2D Analysis for Suspension Bridges Subject to Wind Excitation (현수교 풍진동에 관한 2D 간단해석 및 변수연구)

  • Kim, Woo Seok;Lee, Jaeha
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.6
    • /
    • pp.463-470
    • /
    • 2013
  • In this paper, 2D simple analyses were performed in order to predict the large torsional oscillations in a suspension bridge based on Makenna and Tuama model(2001). The existing model(Makenna and Tuama, 2001) has shown unrealistic results as the wind speed increases and frequency decreases. Furthermore, resonance could not be simulated by the existing model. Therefore, in this study, new model was proposed with a consideration of the torsional resistance. The vertical and rotational behaviors of the deck in the suspension bridge were analyzed. Analysis results showed that at first vertical oscillations were observed and it was gradually transformed to the rotation oscillations. With the consideration of the torsional resistance, it was shown that vertical behavior were stabilized as time passed. However, the rotational behavior was not stabilized and was kept until the end of analysis. Beat periods decreased while the wind speed increased. The resonance of the rotational mode was dependent to the rotational resistance. Obtained results could be applied for the design of the suspension bridge under the wind load.

Estimation on the Power Spectral Densities of Daily Instantaneous Maximum Fluctuation Wind Velocity (변동풍속의 파워 스펙트럴 밀도에 관한 평가)

  • Oh, Jong Seop
    • Journal of Korean Society of Disaster and Security
    • /
    • v.10 no.2
    • /
    • pp.21-28
    • /
    • 2017
  • Wind turbulence data is required for engineering calculations of gust speeds, mean and fluctuating loading. Spectral densities are required as input data for methods used in assessing dynamic response. This study is concerned with the estimation of daily instantaneous maximum wind velocity in the meteorological major cities (selected each 6 points) during the yearly 1987-2016.12.1. The purpose of this paper is to present the power spectral densities of the daily instantaneous maximum wind velocity. In the processes of analysis, used observations data obtained at Korea Meteorological Adminstration(KMA), it is assumed as a random processes. From the analysis results, in the paper estimated power spectral densities function(Blunt model) shows a very closed with von Karman and Solari's spectrum models.