• Title/Summary/Keyword: 풍력 에너지

Search Result 1,367, Processing Time 0.027 seconds

Maximum Power Point Tracking operation of Thermoelectric Module without Current Sensor (전류센서가 없는 열전모듈의 최대전력점 추적방식)

  • Kim, Tae-Kyung;Park, Dae-Su;Oh, Sung-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.9
    • /
    • pp.436-443
    • /
    • 2017
  • Recently, the development of new energy technologies has become a hot topic due to problems,such as global warming. Unlike renewable energy technologies, such as solar energy generation, solar power, and wind power, which are optimized to achieve medium or above output power, the output power of energy harvesting technology is very small and has not received much attention. On the other hand, as the mobile industry has been revitalized recently, the utility of energy harvesting technology has been reevaluated. In addition, the technology of tracking the maximum power point has been actively researched. This paper proposes a new MPPT(Maximum Power Point Tracking) control method for a TEM(thermoelectric module) for load resistance. The V-I curve characteristics and internal resistance of TEM were analyzed and the conventional MPPT control methods were compared. The P&O(Perturbation and Observation) control method is more accurate, but it is less economical than the CV (Constant Voltage)control method because it usestwo sensors to measure the voltage and current source. The CV control method is superior to the P&O control method in economic aspects because it uses only one voltage sensor but the MPP is not matched precisely. In this paper, a method wasdesigned to track the MPP of TEM combining the advantages of the two control method. The proposed MPPT control method wasverified by PSIM simulation and H/W implementation.

A Pre-Feasibility Test of Introducing Renewable Energy Hybrid Systems -Case Studies for 3 Off-Grid Islands- (도서지역 신·재생복합 전력시스템 보급 타당성 분석 -3개 도서지역 분석결과-)

  • Jang, HaNa;Kim, Suduk
    • Environmental and Resource Economics Review
    • /
    • v.15 no.4
    • /
    • pp.693-712
    • /
    • 2006
  • A pre-feasibility test is done for renewable energy hybrid power systems at off~grid islands in which the current power supply is provided only by diesel generation. We apply Homer (Hybrid Optimization Model for Electric Renewables) which was developed by the National Renewable Energy Laboratory (NREL) for the analysis to identify the cost-minimizing combination of power generating facilities for the given load profiles. Chuja-Do, Geomun-Do and Youngsan-Do have been selected for our analysis considering the wind resources data of the Korea Institute of Energy Research (KIER). Information on wind speed, solar radiation and temperature is also used for the analysis. System component cost information from overseas market has been used due to the lack of domestic information. Site specific Load profile for electricity demand for those islands are reconstructed based on the partial survey results obtained form other sources. The LCOE of the least cost hybrid power systems for Chuja-Do, Geomun-Do and Youngsan-Do are $0.278/kWh, $0.234/kWh and $0.353/kWh, respectively Considering the fact that diesel generation is being subsidized at the price of $0.300/kWh by the government, first 2 cases are economically feasible for the introduction of renewable energy hybrid systems to those islands. But the third case of Youngsan-Do does not meet the criteria. The basic differences of these pre-feasibility test results are from the differences of the site specific renewable energy conditions, especially wind resources. In summary, promoting hybrid systems in the off-grid remote island should be based on the economic feasibility test results. Not all the off-grid islands are feasible for introducing this renewable energy hybrid system.

  • PDF

Exploring the Transformative Regional Innovation Policy and Applying Local Energy Transition: The Case Studies of Gussing, Austria and Esbjerg, Denmark (전환적 지역혁신론의 탐색과 지역에너지 전환의 적용: 오스트리아 귀씽과 덴마크 에스비아르 사례를 중심으로)

  • HAN, Jae kak;LEE, Jung-pil;HA, Vara;SONG, Wichin
    • Journal of Science and Technology Studies
    • /
    • v.19 no.3
    • /
    • pp.291-333
    • /
    • 2019
  • The regional innovation policies so far have been separated from the social problems facing the local communities. The regional innovation policies, regarding the region as the location of the business, have focused on the invigoration of business innovation activities. However, as the recent emergence of the new paradigm of innovation policy aiming the sustainability, 'transformative innovation policy,' has led to a search for regional innovation policies that begin with solving the local social problems. This research paper deals with regional innovation theory that starts from searching for solutions and system transformation for social problems such as climate crisis and energy problems. The objective is to present a new framework called 'transformative regional innovation policy' and to improve its content through case studies by combining the results of the transformative innovation policy and the regional innovation policy studies. In particular, the contribution of this paper is to analyze and discuss the concept of the transition platform, which aims to solve the local social problems, through the case studies of Gussing, Austria and Esbjerg, Denmark. Lastly, it discusses the derived implications of the cases applied in Korean society.

A Study on the Application of CIGS Solar Cells to Improve the Aesthetics of Public Facilities (공공시설물 심미성 향상을 위한 CIGS 태양전지 적용 방안 연구)

  • Lee, Saem;Seo, Ji-Young;Park, Su-Jy;Nam, Won-Suk;Jang, Jung-Sik
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.12
    • /
    • pp.235-243
    • /
    • 2021
  • As environmental problems accompanied by industrialization have emerged worldwide, solar and wind energy have entered the stage of commercialization, especially in Korea. In addition, research on improving aesthetics using solar cells is being actively conducted. Examples include developing a transmissive solar cell and developing a solar cell with flexibility and color. Therefore, in line with the upward trend of solar cell development and solar cell-based public facility installation, we will present guidelines for designing public facilities using solar cells to improve aesthetics. First of all, components were derived to increase the suitability of solar cell application through literature surveys on solar cells and case studies on public facilities using solar cells. Next, through prior research on public facility guidelines, we established evaluation principles and drafted design guidelines. Based on this, a Delphi survey was conducted on a group of experts to verify its validity. Design guidelines for solar cells application measures to improve the final public design aesthetics were derived. The goal is to improve the public facilities using solar cells, through Accessibility and cognition, Usability, Shape and aesthetics, Sustainability and energy efficiency, Continuity with the urban landscape. And it is expected that this data will be used to improve the aesthetics of public design using solar cells in the future.

On Building the Solar Dataset Form using the Kaggle Platform: The applicability of Machine Learning (캐글 플랫폼 활용한 태양광 데이터셋 형태 구축: 머신 러닝의 적용 가능성)

  • Ko, Ju-won;Park, Jung-jin;Park, Jin-woo;Oh, Do-hee;Kim, Mincheol
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.255-258
    • /
    • 2022
  • As environmental pollution continues, attention on renewable energy is on the constant rise in recent days. Although various kinds of renewable energy such as solar, wind power and biomass energy have been generated in Jeju, opening and analyzing cases on related data seem insufficient. Therefore, this study is being conducted to deduce the variables which have high relation with solar panel&s output and to understand machine learning methods that can be applied to solar power generation data by utilizing Kaggle platform, which is actively used by a number of scientists. Then, it is planned to propose a form of solar power generation dataset by researching machine learning methods that could be applied to the data. To be specific, analyzing solar power generation data with the Kaggle platform, this study will provide complements on gathering solar power data in Jeju. This study is anticipated to be utilized on data analysis for developing the solar power industry in Jeju. That is, this study is expected to reveal the room for improvement inherent in existing open datasets in Jeju, so that they could be constructed in a suitable form for machine learning for AI analytics. Through this process, a method to increase efficiency of solar power generation is anticipated to be prepared.

  • PDF

Dynamic Response Analysis of Pressurized Air Chamber Breakwater Mounted Wave-Power Generation System Utilizing Oscillating Water Column (진동수주형 파력발전 시스템을 탑재한 압축공기 주입식 방파제의 동적거동 해석)

  • Lee, Kwang-Ho;Kim, Do-Sam;Yook, Sung-Min;Jung, Yeong-Hoon;Jung, Ik-Han
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.4
    • /
    • pp.225-243
    • /
    • 2014
  • As the economic matters are involved, applying the WEC, which is used for controlling waves as well as utilizing the wave energy on existing breakwater, is preferred rather than installing exclusive WEC. This study examines the OWC mounted on a pressurized air chamber floating breakwater regarding the functionality of both breakwater and wave-power generation. In order to verify the performance as a WEC, the velocity of air flow from pressurized air chamber to WEC has to be evaluated properly. Therefore, numerical simulation was implemented based on BEM from linear velocity potential theory as well as Boyle's law with the state equation to analyze pressurized air flow. The validity of the obtained values can be determined by comparing the previous results from numerical analysis and empirically obtained values of different shapes. In the actual numerical analysis, properties of wave deformation around OWC system mounted on fixed type and floating type breakwaters, motions of the structure with air flow velocities are investigated. Since, the wind power generating system can be hybridized on the structure, it is expected to be applied on complex power generation system which generates both wind and wave power energy.

Design of Ship-type Floating LiDAR Buoy System for Wind Resource Measurement inthe Korean West Sea and Numerical Analysis of Stability Assessment of Mooring System (서해안 해상풍력단지 풍황관측용 부유식 라이다 운영을 위한 선박형 부표식 설계 및 계류 시스템의 수치 해석적 안정성 평가)

  • Yong-Soo, Gang;Jong-Kyu, Kim;Baek-Bum, Lee;Su-In, Yang;Jong-Wook, Kim
    • Journal of Navigation and Port Research
    • /
    • v.46 no.6
    • /
    • pp.483-490
    • /
    • 2022
  • Floating LiDAR is a system that provides a new paradigm for wind condition observation, which is essential when creating an offshore wind farm. As it can save time and money, minimize environmental impact, and even reduce backlash from local communities, it is emerging as the industry standard. However, the design and verification of a stable platform is very important, as disturbance factors caused by fluctuations of the buoy affect the reliability of observation data. In Korea, due to the nation's late entry into the technology, a number of foreign equipment manufacturers are dominating the domestic market. The west coast of Korea is a shallow sea environment with a very large tidal difference, so strong currents repeatedly appear depending on the region, and waves of strong energy that differ by season are formed. This paper conducted a study examining buoys suitable for LiDAR operation in the waters of Korea, which have such complex environmental characteristics. In this paper, we will introduce examples of optimized design and verification of ship-type buoys, which were applied first, and derive important concepts that will serve as the basis for the development of various platforms in the future.

Production of Solar Fuel by Plasma Oxidation Destruction-Carbon Material Gasification Conversion (플라즈마 산화분해-탄화물 가스화 전환에 의한 태양연료 생산)

  • Song, Hee Gaen;Chun, Young Nam
    • Clean Technology
    • /
    • v.26 no.1
    • /
    • pp.72-78
    • /
    • 2020
  • The use of fossil fuel and biogas production causes air pollution and climate change problems. Research endeavors continue to focus on converting methane and carbon dioxide, which are the major causes of climate change, into quality energy sources. In this study, a novel plasma-carbon converter was proposed to convert biogas into high quality gas, which is linked to photovoltaic and wind power and which poses a problem on generating electric power continuously. The characteristics of conversion and gas production were investigated to find a possibility for biogas conversion, involving parametric tests according to the change in the main influence variables, such as O2/C ratio, total gas feed rate, and CO2/CH4 ratio. A higher O2/C ratio gave higher conversions of methane and carbon dioxide. Total gas feed rate showed maximum conversion at a certain specified value. When CO2/CH4 feed ratio was decreased, both conversions increased. As a result, the production of solar fuel by plasma oxidation destruction-carbon material gasification conversion, which was newly suggested in this study, could be known as a possibly useful technology. When O2/C ratio was 0.8 and CO2/CH4 was 0.67 while the total gas supply was at 40 L min-1 (VHSV = 1.37), the maximum conversions of carbon dioxide and methane were achieved. The results gave the highest production for hydrogen and carbon dioxide which were high-quality fuel.

A Study on Electromagnetic Compatibility Performance Evaluation of Power Conditioning System for Residential Fuel Cell (가정용 연료전지 전력변환장치 전자파적합성 성능 평가 연구)

  • Choi, Young-Joo;Nam, Tae-Ho;Lee, Eun-Kyung;Lee, Duk-Gwon;Lee, Jung-Woon;Lee, Seung-Kuk;Moon, Jong-Sam
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.6
    • /
    • pp.23-29
    • /
    • 2017
  • Solar and wind energy among the renewable energy produce irregular power because resource is difficult to control. When connected to grid have unstable. However, when the fuel cell system is connected to grid more stable because regular frequency and output power based on controllable hydrogen energy. To using fuel cell system in the household, it is important that the safety performance of power conditioning system(PCS) and it is important that evaluation method of electromagnetic compatibility(EMC). In this study, we consider that introduce power-frequency magnetic field immunity test before analyzed that compare with the EMC of the international standards and KGS AB 934 PC53. Also, we conduct that actual assessment and study on available the quantitative analysis as using complementary indicator.

A Study on the Development of Long-term Self Powered Underground Pipeline Remote Monitoring System (자가 발전형 장기 지하매설배관 원격감시 장치 개발에 관한 연구)

  • Kim, Youngsear;Chae, Hyun-Byung;Seo, Jae-Soon;Chae, Soo-Kwon
    • Journal of the Korean Society for Environmental Technology
    • /
    • v.19 no.6
    • /
    • pp.576-585
    • /
    • 2018
  • Systematic management during the whole life cycle from construction to operation and maintenance is very important for the seven underground pipelines (waterworks, sewerage, electricity, telecommunications, gas, heating, oil including waterworks and sewerage). Especially, it is the construction process that affects the whole life cycle of underground buried pipeline. In order to construct a new city or to maintain different underground pipes, it is always necessary to dig the ground and carry out construction and related work. There is a possibility that secondary and tertiary breaks frequently occur in the pipeline construction process after the piping constructed first in this process. To solve this problem, a system is needed which can monitor damage in real time. However, the supply of electric power for continuous operation of the system is limited according to the environment of underground buried pipelines, so it is necessary to develop a stable electric power supply system using natural energy rather than existing electric power. In this study, we developed a system that can operate the pipeline monitoring system for long time (24 hours and 15 days) using natural energy using wind and solar light.