• Title/Summary/Keyword: 풍력 모노파일 기초

Search Result 20, Processing Time 0.028 seconds

Case Study on Reliability Analysis of Offshore Wind Turbine Foundation (해상풍력기초 신뢰성해석 사례분석 연구)

  • Yoon, Gillim;Kim, Hongyeon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.12
    • /
    • pp.91-98
    • /
    • 2012
  • In this paper, the behavior of offshore wind turbine(OWT) foundation which is modeled by using existing design method and FEM is compared. When the same type of foundation is designed under the same sea and ground condition, the behavior characteristics with each model are compared. As a result, the member forces between apparent fixity and distributed spring type foundation which consider the ground stiffness are not different markedly, while fixed-base type foundation shows relatively lower member forces, which results in smaller safety margin. In other words, considering ground stiffness is reasonable because soil-pile interaction affects significantly on the analysis result. A case study with a monopile shows significant errors between p-y and FEM model at the head and tip of the pile. Also, it shows that the errors at the tip with diameter increase of the pile is larger. Thus, considering ground characteristics and engineering judgment are necessary in practice. A comparison of reliability analysis between tripod and monopile type foundation on the same condition shows larger probability of failure in monopile type and it indicates that the safety margin of monopile type can be lower.

Comparative Study on Soil-Structure Interaction Models for Modal Characteristics of Wind Turbine Structure (풍력 구조물의 진동 특성 분석을 위한 지반-구조물 상호작용 모델의 비교 연구)

  • Kim, Jeongsoo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.4
    • /
    • pp.245-253
    • /
    • 2020
  • In this study, natural frequencies are compared using several pile-soil interaction (PSI) models to evaluate the effects of each model on resonance safety checks for a monopile type of wind turbine structure. Base spring, distributed spring, and three-dimensional brick-shell models represented the PSIs in the finite element model. To analyze the effects of the PSI models on a natural frequency, after a stiffness matrix calculation and Winkler-based beam model for base spring and distributed spring models were presented, respectively; natural frequencies from these models were investigated for monopiles with different geometries and soil properties. These results were compared with those from the brick-shell model. The results show that differences in the first natural frequency of the monopiles from each model are small when the small diameter of monopile penetrates hard soil and rock, while the distributed spring model can over-estimate the natural frequency for large monopiles installed in weak soil. Thus, an appropriate PSI model for natural frequency analyses should be adopted by considering soil conditions and structure scale.

Reliability Analysis of Monopile for a Offshore Wind Turbine Using Response Surface Method (응답면 기법을 이용한 해상풍력용 모노파일의 신뢰성 해석)

  • Yoon, Gil Lim;Kim, Kwang Jin;Kim, Hong Yeon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.6
    • /
    • pp.2401-2409
    • /
    • 2013
  • Reliability analysis with response surface method (RSM) was peformed for a offshore wind turbine (OWT) monopile, which is one of mostly used foundations under 25m seawater depth in the world. The behaviors of a real OWT monopile installed into sandy soils subjected to offshore environmental loads such as wind and wave were analysed using reliability design program (HSRBD) developed in KIOST. Sensitivity analysis of design variables for a OWT monopile with 6m diameter showed that the larger in pile diameter the smaller in probability of failure ($P_f$) of a horizontal deflection and a rotational angle at a pile top, but at a greater than 7m of pile diameter, the reduction rate of $P_f$ was almost constant. It is a necessary that appropriate local design criteria should be designated as soon as possible because there were significant differences on horizontal deflections; $P_f$ was 60% at a minimum criteria 15mm deflection, however, 1.5% $P_f$ when 60mm deflection using 1% of pile diameter from local design criterion standard. Finally, friction angle of sand among many design variables was found most influential design factor in OWT monopile design, and a sensitivity analysis is found an important process to understand which design variables can mostly reduce $P_f$ with a optimum design for maintaining OWT stability.

Technical Issues for Offshore Wind-Energy Farm and Monopile Foundation (해상풍력 발전의 기술동향 및 모노파일 기술개발 방향)

  • Choi, Chang-Ho;Cho, Sam-Deok;Kim, Ju-Hyong;Chae, Jong-Gil
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.486-493
    • /
    • 2010
  • Recently, it has been a worldwide issue to develop offshore wind farm based on the past technical experiences of onshore wind turbine installation. In Korea, the government has the wind-energy to be a new-sustainable field of development to bring green-growth in near future and put political and fiscal efforts to support the academic and industrial technical development. Especially, there are much advancement for the fields of turbine, blade, bearing, grid connection, ETC. Correspondingly, technical needs do exist for the offshore foundation installation techniques in geotechnical point of view. Within few years, 2~5MW offshore wind turbines will be constructed at about 30m water depth and it is known that monopiles of D=4~6m are suitable types of foundation. In order to construct offshore wind-turbine foundation, technical developments for drilling machine, design manual, monitoring&maintenance technique are required. This paper presents technical issues with related to offshore wind farm and large diameter monopile in the point of renewable energy development.

  • PDF

Effect of Foundation Flexibility of Offshore Wind Turbine on Force and Movement at Monopile Head (해상풍력발전기 기초구조물의 강성이 모노파일 두부의 부재력 및 변위에 미치는 영향)

  • Jung, Sungmoon;Kim, Sung-Ryul;Lee, Juhyung;Le, Chi Hung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.4
    • /
    • pp.21-31
    • /
    • 2014
  • Recently, the research on renewable energy against depletion of fossil fuel have been actively carried out in the world. Especially, offshore wind turbines are very economical and innovative technology. However, offshore wind turbines experience large base moments due to the wind and wave loading, so the monopile with large diameter needs to be applied. For the economical design of the large diameter pile, it is important to consider the flexibility of the foundation to estimate the maximum moment accurately, based on studies conducted so far. In this paper, the foundation was modeled using the finite element method in order to better describe the large diameter effect of a monopile and the results were compared with those of p-y method. For the examples studied in this paper, the change in maximum moment was insignificant, but the maximum tilt angle from the finite element method was over 14% larger than that of p-y method. Therefore, the finite element approach is recommended to model the flexibility effect of the pile when large tilt angles may cause serviceability issues.

Analysis of the Multi-layered Soil on Monopile Foundation of Offshore Wind Turbine (해상 풍력 타워의 모노파일 기초에 대한 다층 지반 해석)

  • Kim, Nam-Hyeong;Go, Myeong-Jin
    • Journal of Navigation and Port Research
    • /
    • v.37 no.6
    • /
    • pp.655-662
    • /
    • 2013
  • Recently, by the problems owing to utilization of fossil fuel, various green energies receive attention. Wind, the impetus for the wind power generation as one of the green energies, is observed higher quality value in the offshore than onshore. Also, the development of offshore wind turbines is in the spotlight as alternative to solve the problems of onshore wind farm such as securing sites, noise, and electromagnetic waves, and to get efficient wind energy. Therefore, the many researches on offshore wind energy have been carried out. As wind towers are advanced to ocean, offshore wind towers have been enlarged. Thus, stability is required to endure wind force and wave force. In this study, the external forces act on the foundation in multi-layered are calculated by p-y relation.

A study on load evaluation and analysis for foundation of the offshore wind turbine system (해상풍력 하부구조물 하중영향평가 및 해석기술연구)

  • Kwon, Daeyong;Park, Hyunchul;Chung, Chinwha;Kim, Yongchun;Lee, Seungmin;Shi, Wei
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.184.2-184.2
    • /
    • 2010
  • With growing of wind turbine industry, offshore wind turbine system is getting more attention in recent years. Foundation of the offshore wind turbine plays a key role in stability of whole system. In this work, 5MW NREL reference wind turbine with rated speed of 11.4m/s is used for load calculation. Wind loads and wave loads are evaluated using GH-Bladed (Garard Hassan) and FAST (NREL). Additionally, FE simulation is carried out to investigate the wave effect on the support structure. Meanwhile, this work is trying to systematize and optimize load cases simulation for foundation of wind turbine system.

  • PDF

A Study on Load Evaluation and Analysis for Foundation of the Offshore Wind Turbine System (해상풍력 하부구조물 하중영향평가 및 해석기술연구)

  • Kwon, Dae-Yong;Park, Hyun-Chul;Chung, Chin-Wha;Kim, Yong-Chun;Lee, Seung-Min;Shi, Wei
    • New & Renewable Energy
    • /
    • v.6 no.3
    • /
    • pp.39-46
    • /
    • 2010
  • With growing of wind turbine industry, offshore wind energy is getting more attention in recent years. Among all the components of offshore wind turbines, the foundation of the offshore wind turbine plays a key role in stability of whole system. In this work, the 5 MW NREL reference wind turbine with rated speed of 11.4 m/s is used for load calculation. Wind and wave loads are calculated using GH-Bladed (Garard Hassan) and FAST (NREL). Additionally, FE simulation is carried out to investigate the wave effect on the support structure. Meanwhile, this work is to simulate systemic and optimized load cases for the foundation analysis of wind turbine system.

Numerical Analysis of Offshore Wind Turbine Foundation Considering Properties of Soft layer in Jeju (제주 연약지층 특성을 고려한 해상풍력기초의 수치해석적 연구)

  • Yang, Ki-Ho;Seo, Sang-Duk;Cho, Yee-Sun;Park, Jeong-Jun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.4
    • /
    • pp.45-56
    • /
    • 2013
  • Recently, offshore wind farms are increasingly expected, because there are huge resource and large site in offshore. Jeju island has optimum condition for constructing a wind energy farm. Unlike the mainland, Jeju island has stratified structure distribution between rock layers sediments due to volcanic activation. In these case, it can be occur engineering problems in whole structures as well as the safety of foundation as the thickness and distribution of sediment under top rock layer can not support sufficiently the structure. In this paper, the settlement and stress distribution is predicted by numerical analysis when the mono-pile base are constructed on various soft layer between stratified structure. To determine the settlement of the pile foundation supported on stratified rock layer, the geological investigation at the 3 regiions and the results of laboratory experiments of the stratified rock layer is required.

Fragility Assessment of Offshore Wind Turbine by Ship Collision (선박충돌에 의한 해상풍력발전기의 취약도 평가)

  • Cho, Byung Il;Kim, Dong Hyawn
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.4
    • /
    • pp.236-243
    • /
    • 2013
  • Offshore wind turbines has to be proved against accidental events such as ship collision. In this study, ship collision fragility analysis of offshore wind turbine is done. Dynamic collision analysis is accomplished by considering soil foundation interaction and fluid structure interaction. Uncertainties due to ship weight and speed, angle are also considered. By analyzing dynamic response of offshore wind turbine, fragility curves are obtained for different damage levels. They can be used for restricting boat speed around the wind turbine and allowable size of the boat for inspection and for other purposes. Results of the fragility, it was confirmed fragility of collision speed of bulk ship of 30,000DWT and 850ton barge ship.