• Title/Summary/Keyword: 풍력터빈 블레이드

Search Result 151, Processing Time 0.031 seconds

Aerodynamic Performance for Horizontal Axis Wind Turbine Model using Subsonic Wind Tunnel (풍동실험을 통한 수평축 풍력터빈 모델의 공력성능 연구)

  • Ryu, Ki-Wahn;Yoon, Seong-Jun;Lee, Chang-Su;Choy, Seong-Ok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.11
    • /
    • pp.964-972
    • /
    • 2007
  • Wind turbine experiment was carried out for the horizontal axis wind turbine with the aerodynamically optimized blade. From the comparison of aerodynamic performance between upwind and downwind type wind turbine rotor, the measured torque fluctuation of the latter is larger than that of the former. This phenomenon is owing to the interaction of wake generated from support column and blades. The wind turbine model satisfies the design condition in that the measured result of the power coefficient at zero pitch angle shows maximum peak at the designed tip speed ratio, λ = 6. It also shows that the decrease in aerodynamic power due to negative pitch change is more sensitive than that of the same positive pitch change.

Aerodynamic and Structural Design of A High Efficiency Small Scale Composite Vertical Axis Wind Turbine Blade (복합재가 적용된 고효율 소형 수직축 풍력터빈 블레이드의 공력 설계 및 구조 설계에 관한 연구)

  • Gong, Chang-Duk;Lee, Ha-Seung;Kim, In-Kweon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.8
    • /
    • pp.758-765
    • /
    • 2011
  • Recently, the wind energy has been widely used as a renewable energy resource due to lack and environmental issues of the mostly used fossil fuel. This work is to develop a 500W class blade design of vertical axis wind turbine system which will be applicable to relatively low speed region like Korea and for the domestic use. For this wind turbine a high efficiency and low noise turbine blade was designed with the proposing aerodynamic design procedure, and a light composite structure blade. Structural analyses were performed using the Finite Element Method and fatigue life of the designed blade is estimated. Finally, in order to check its performance, the manufactured blade was tested by using truck and the results of test was good with respect to its analysis result.

Feasibility of Bladder Compression Molded Prepreg as Small Wind Turbine Blade Material (소형 풍력 터빈 블레이드 재료로서 블래더 가압 방식 몰드 성형 프리프레그의 타당성)

  • Yi, Bo-Gun;Seo, Seong-Won;Song, Myung-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.2
    • /
    • pp.95-101
    • /
    • 2020
  • The wind turbine blades should be designed to possess a high stiffness and should be fabricated with a light and high strength material because they serve under extreme combination of lift and drag forces, converting kinetic energy of wind into shaft work. The goal of this study is to understand the basic knowledge required to curtail the process time consumed during the construction of small wind turbine blades using carbon fiber reinforced polymer (CFRP) prepeg composites. The configuration of turbine rotor was determined using the QBlade freeware program. The fluid dynamics module simulated the loads exerted by the wind of a specific speed, and the stress analysis module predicted the distributions of equivalent von Mises stress for representing the blade structures. It was suggested to modify the shape of test specimen from ASTM D638 to decrease the variance in measured tensile strengths. Then, a series of experiments were performed to confirm that the bladder compression molded CFRP prepreg can provide sufficient strength to small wind turbine blades and decrease the cure time simultaneously.

Flow Control on Wind Turbine Airfoil with a Vortex Cell (와류 셀을 이용한 풍력블레이드 에어포일 주위 유동 제어)

  • Kang, Seung-Hee;Kim, Hye-Ung;Ryu, Ki-Wahn;Lee, Jun-Shin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.5
    • /
    • pp.405-412
    • /
    • 2012
  • A flow control on airfoil installed a vortex cell for high efficiency wind turbine blade in stationary and dynamic stall conditions have been numerically investigated by solving the compressible Navier-Stokes equations. The numerical scheme is based on a node-based finite-volume method with Roe's flux-difference splitting and an implicit time-integration method coupled with dual time step sub-iteration. The computed result for the airfoil in the stationary showed that lift-drag ratio increases due to low pressure by the vortex cell. The oscillating airfoil with the vortex cell showed that the magnitude of hysteresis loop is reduced due to the enhanced vortex in the cell.

Design and Flow Analysis on the 1kW Class Horizontal Axis Wind Turbine Rotor Blade for Use in Southwest Islands Region (서남권 도서지역에 적합한 1kW급 수평축 풍력터빈 로터 블레이드 설계 및 유동해석)

  • Lee, Jun-Yong;Choi, Nak-Joon;Yoon, Han-Yong;Cho, Young-Do
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.3
    • /
    • pp.5-11
    • /
    • 2012
  • This study is to develop a 1kW-class horizontal axis wind turbine(HAWT) rotor blade which will be applicable to relatively low wind speed regions in southwest islands in Korea. Shape design of 1kW-class small wind turbine rotor blade is carried out using a blade profile with relatively high lift to drag ratio by blade element momentum theory(BEMT). Aerodynamic analysis on the newly designed rotor blade is performed with the variation of tip speed ratio. Power coefficient and pressure coefficient of the designed rotor blade are investigated according to tip speed ratio.

A Study on Structural Design and Test of 500W Class Micro Scale Composite Wind Turbine Blade (초소형 풍력터빈 복합재 블레이드 구조 설계에 관한 연구)

  • Gong, Chang-Deok;Kim, Ju-Il
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.190-193
    • /
    • 2005
  • The purpose of the present study is to design a 500W-class micro scale composite wind turbine blade. The blade airfoil of FFA-W3-211 was selected to meet Korean weather condition. The skin-spar-f Dam sandwich type structure was adopted for improving buckling and vibration damping characteristics. The design loads were determined at wind speed of 25m/s. and the structural analysis was performed to confirm safety and stability from strength. buckling and natural frequency using the finite element code. NISA II [6]. The prototype was manufactured using the hand-lay up method and it was experimently tested using the sand bag loading method. In order to evaluate the design results. it was compared with experimental results. According to comparison results. the estimated results such as compressible stress. max tip deflection natural frequency and buckling load factor were well agreed with the experimental results.

  • PDF

Aerodynamic characteristics of a vertical axis wind turbine blade (수직축 풍력터빈 블레이드의 공기역학적 특성)

  • Shin, Jee-Young;Son, Young-Seok;Cha, Duk-Guen;Lee, Cheol-Gyun;Hwang, I-Cheol
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.8
    • /
    • pp.877-884
    • /
    • 2006
  • The objective of this study is to investigate the aerodynamic characteristics of a vertical axis wind turbine blade as the basic study of a design of a vertical axis wind turbine. The lift and drag coefficients of the various shape of the vortical axis wind turbine blades are analyzed and compared using the CFD code Fluent. To validate the numerical analysis, the predicted results of the Fluent are compared with those of the Xfoil code and the experimental results. We conclude that the program Fluent can be used to predict the aerodynamics of the wind turbine blade. By comparing the predicted results of the aerodynamic characteristics of the different shape of the blades, an appropriate shape of the blade is suggested to design the vortical axis wind turbine blade.

Study on a 500W Class Wind Turbine using a High Efficiency Composite Blades (고효율 복합재 블레이드를 사용한 500W급 풍력터빈에 관한 연구)

  • Kong, Chang-Duk;Choi, Su-Hyun;Park, Hyun-Bum
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.2
    • /
    • pp.201-208
    • /
    • 2009
  • Recently, the wind energy has been widely used as a renewable energy resource due to lack and environmental issues of the mostly used fossil fuel. This work is to develop a 500W class small wind turbine blade which will be applicable to relatively low speed region like Korea and for the domestic use. For this blade a high efficiency wind turbine blade was designed with the proposing aerodynamic design procedure, and a light and low cost composite structure blade was designed considering fatigue life. Structural analyses including load case study, stress, deformation, buckling and vibration analysis were performed using the Finite Element Method. The fatigue life was estimated using the load spectrum analysis and the Miner rule. In order to evaluate the designed blade, the structural and aerodynamic performance tests were carried out, and the test results were compared with the analysis results.

Atmospheric Icing Effects on the Aerodynamic Characteristics and Performance of Wind Turbine Blade (풍력 블레이드의 결빙에 의한 공력특성 및 성능 변화)

  • Park, Ji-Ho;Myong, Rho-Shin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.2
    • /
    • pp.134-143
    • /
    • 2014
  • A significant degradation in the aerodynamic performance of wind turbine system can occur by ice accretion on the surface of blades operated in cold climate. The ice accretion can result in performance loss, overloading due to delayed stall, excessive vibration associated with mass imbalance, ice shedding, instrumental measurement errors, and, in worst case, wind turbine system shutdown. In this study, the effects of ice accretions on the aerodynamic characteristics of wind turbine blade sections are investigated on the basis of modern CFD method. In addition, the computational results are used to predict the performance of three-dimensional wind turbine blade system through the blade element momentum method. It is shown that the thickness of ice accretion increases from the root to the tip and the effects of icing conditions such as relative wind velocity play significant role in the shape of ice accretion.

Multi-Point Design Optimization of 5MW HAWT Blade (5MW급 수평축 풍력발전 블레이드의 다점 최적설계)

  • Park, Kyung-Hyun;Jun, Sang-Ook;Kim, Sang-Hun;Jung, Ji-Hun;Lee, Ki-Hak;Jeon, Yong-Hee;Choi, Dong-Hoon;Lee, Dong-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.474-477
    • /
    • 2009
  • 본 연구에서는 5MW급 수평축 풍력발전 블레이드에 대한 정격풍속과 낮은 풍속 영역을 고려하여 풍속에 대한 다점 최적설계를 수행하였다. 다점 최적설계를 수행하기 위해 블레이드 해석은 Blade Element and Momentum theory를 이용 하였으며, 설계 시 적용된 기저형상은 NREL에서 제안한 5MW급 풍력터빈 블레이드이다. 최적화 과정을 통해 얻어진 최적해의 집합에 대하여 L2 Norm을 통한 파레토분석을 하였으며, 이를 통해 기저형상의 연간 에너지생산량과 설비 이용률을 보다 향상 시킬 수 있었다.

  • PDF