• Title/Summary/Keyword: 풍력터빈 블레이드

Search Result 151, Processing Time 0.027 seconds

Stress Analysis of the Blade Joint for a Small Wind Turbine (소형풍력터빈 블레이드 체결부의 응력해석)

  • Kim, Deok-Su;Jung, Won-Young;Jung, Jin-Tai
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.1
    • /
    • pp.117-124
    • /
    • 2012
  • In this paper, an analysis of the joint that transmits power from the blades to the generator is performed using the FEM (finite element method). The mode shapes and natural frequencies were extracted using experimental modal analysis in order to establish the FEM model. Then, the model was verified by comparing the mode shapes and natural frequencies to those obtained from the ANSYS modal analysis. Dynamic stress analysis was performed at the rated and limited wind speeds considering the wind load and gravity.

Forced Vibration and Loads Analysis of Large-scale Wind Turbine Blades Considering Blade Bending and Torsion Coupling (굽힘 및 비틀림 연성 효과를 고려한 대형 풍력 터빈 블레이드의 강제 진동 및 하중 해석)

  • Kim, Kyung-Taek;Park, Jong-Po;Lee, Chong-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.256-263
    • /
    • 2008
  • The assumed modes method is developed to derive a set of linear differential equations describing the motion of a flexible wind turbine blade and to propose an approach to investigate the forced responses result from various wind excitations. In this work, we have adopted Euler beam theory and considered that the root of the blade is clamped at the rigid hub. And the aerodynamic parameters and forces are determined based on Blade Element Momentum (BEM) theory and quasi-steady airfoil aerodynamics. Numerical calculations show that this method gives good results and it can be used fur modeling and the forced vibration analysis including the coupling effect of wind-turbine blades, as well as turbo-machinery blades, aircraft propellers or helicopter rotor blades which may be considered as straight non-uniform beams with built-in pre-twist.

  • PDF

Stability Analysis of a Wind Turbine Blade Considering Wind Force and Variation of Pitch Angle (풍 하중과 Pitch각 변화에 따른 풍력 터빈 블레이드의 안정성 해석)

  • Kwon, Seung Min;Kang, Moon Jeong;Yoo, Hong Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.12
    • /
    • pp.1164-1171
    • /
    • 2012
  • Recently, researches related to the green energy generation systems have increased significantly. Among them wind turbines are the most spread practical green energy generation systems. In order to enhance the power generation capacity of the wind turbine blade, the length of wind turbine blade has increased. It might cause undesirable excessive dynamic loads. Therefore dynamic characteristics of a wind turbine blade system should be identified for a safe design of the system. In this study, the equations of motion of a wind turbine blade system undergoing gravitational force are derived considering wind force and pitch angle. Effects of wind speed, variation of pitch angle of the wind turbine blade, rotating speed, and the blade length on its stability characteristics are investigated.

Simulation Modeling cnd Analysis of Pitch Controlled Variable Speed Wind Turbine System (피치제어형 가변속 풍력터빈 시스템의 시뮬레이션 모델링과 해석)

  • Kim, Eel-Hwan;Kang, Geong-Bo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.2
    • /
    • pp.124-130
    • /
    • 2005
  • This paper presents the simulation modeling and analysis of variable wind speed turbine system(VWTS) using Psim program In the simulation, using the Vestas V47 VWTS located in Hangwon wind farm in Jeju-Do as a model, wind model, blade model, pitch control model and grided connected generator are modeled. The VWTS is controlled by the optimal pitch angle for maximum output power under the rated wind speed and for the rated output power over the rated wind speed. To verify the effectiveness of proposed method, simulation results are compared with the actual data from the model system According to the comparison of these results, this method shows excellent performance. So it is very useful for understanding and applications of wind power control system.

Design of a 2MW Blade for Wind Turbine and Uni-Directional Fluid Structure Interaction Simulation (2 MW급 풍력터빈 블레이드 설계 및 단방향 유체-구조연성해석)

  • Kim, Bum-Suk;Lee, Kang-Su;Kim, Mann-Eung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.12
    • /
    • pp.1007-1013
    • /
    • 2009
  • The purposes of this study are to evaluate the power performance through CFD analysis and structural integrity through uni-directional FSI analysis in aerodynamic design and structure design of wind turbine blade. The blade was designed to generate the power of 2MW under the rated wind speed of 11 m/s, consisting of NACA 6 series, DU series and FFA series airfoil. The inside section of the blade was designed into D-spar structure and circular stiffener was placed to reinforce the structural strength in the part of hub. CFD analysis with the application of transitional turbulence model was performed to evaluate the power performance of blade according to the change of TSR and 2.024MW resulted under the condition of rated wind speed. TSR of 9 produced the maximum power coefficient and in this case, Cp was 0.494. This study applied uni-directional FSI analysis for more precise evaluation of structural integrity of blade, and the results of fiber failure, inter fiber failure and eigenvalue buckling analysis were evaluated, respectively. For the evaluation, Puck's failure criteria was applied and the result showed that fiber failure and inter fiber failure did not occur under every possible condition of the analysis. As a result, power performance and structural integrity of 2 MW blade designed in this study turned out to satisfy the initial design goals.

A Study of Vertical Axis Wind Turbine (수직축 풍력터빈에 관한 연구)

  • park, Jung-Cheul
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.5
    • /
    • pp.389-395
    • /
    • 2017
  • This paper showed the difference in the optimum conditions by using the ANSYS CFX simulation program with the changes of the main-blade angle and sub-blade angle. Main-blade Shape 4,which had angle $45^{\circ}$ while other Shapes with angle $0^{\circ}$, was increased to 157.2[%] to 263.2[%] in the power and was increased to 110[%] to 250[%] in the power coefficient. Moreover, when the Shape 5 Fin length of main-blade doubled, the power was 70.8[%] when compared with Shape 1 and 27.5[%] with shape 4.If the main-blade geometry equals shape 1 in the case structure, The power of Case1 was increased to 13.3[%] when compared with Case2. Also, the power coefficient was increased to 15.4[%]. When sub-blade angle was $45^{\circ}$, main-blade was better than the Fin type than the Bended type. The power of Case4 was increased to 47[%] when compared with Csae1 and increased to 13.6[%] with Case 3. Also, the power coefficient was 46.7[%] when compared with Case 1 and 15.8[%] with Case 3.

Basic Configuration Design and Performance Prediction of an 1 MW Wind Turbine Blade (1 MW 풍력터빈 블레이드 형상기본설계 및 성능해석)

  • Kim, Bum-Suk;Kim, Mann-Eung;Lee, Young-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.5
    • /
    • pp.15-21
    • /
    • 2008
  • In modem wind power system of large capacity above 1MW, horizontal axis wind turbine(HAWT) is a common type. And, the optimum design of wind turbine to guarantee excellent power performance and its reliability in structure and longevity is a key technology in wind Industry. In this study, mathematical expressions based upon the conventional BEMT(blade element momentum theory) applying to basic 1MW wind turbine blade configuration design. Power coefficient and related flow parameters, such as Prandtl's tip loss coefficient, tangential and axial flow induction factors of the wind turbine analyzed systematically. X-FOIL was used to acquire lift and drag coefficients of the 2-D airfoils and we use Viterna-Corrigan formula to interpolate the aerodynamic characteristics in post-stall region. In order to predict the performance characteristics of the blade, a performance analysis carried out by BEMT method. As a results, axial and tangential flow factors, angle of attack, power coefficient investigated in this study.

Software Development for the Performance Evaluation and Blade Design of a Pitch-Controlled HAWT based on BEMT (날개요소 운동량 이론을 이용한 피치제어형 수평축 풍력터빈 블레이드 설계 및 성능평가 소프트웨어 개발)

  • Mo, Jang-Oh;Kim, Bum-Suk;Kim, Mann-Eung;Choi, Young-Do;Lee, Young-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.2
    • /
    • pp.5-10
    • /
    • 2011
  • The purpose of this study is to develop a software for the performance evaluation and blade design of a pitch-controlled HAWT using BEMT(Blade Element Momentum Theory) with Prandtl's tip loss. The HERACLES V2.0 software consist of three major part ; basic blade design, aerodynamic coefficient mapping and performance calculation including stall or pitch control option. A 1MW wind turbine blade was designed at the rated wind speed(12m/s) composing five different airfoils such as FFA-W-301, DU91-W250, DU93-W-210, NACA 63418 and NACA 63415 from hub to tip. The mechanical power predicted by BEMT at the rated wind speed is about 1.27MW. Also, CFD analysis was performed to confirm the validity of the BEMT results. The comparison results show good agreement about the error of 6.5% in rated mechanical power.

Basic Configuration Design and Performance Analysis of a 100kW Wind Turbine Blade using Blade Element Momentum Theory (BEMT에 의한 100kW 풍력터빈 블레이드 기본설계 및 출력 성능해석)

  • Kim, Bum-Suk;Kim, Mann-Eung;Lee, Young-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.827-833
    • /
    • 2008
  • In this study, mathematical expressions based upon the conventional BEMT(blade element momentum theory) was applied to basic 100kW wind turbine blade configuration design. Power coefficient and related flow parameters, such as Prandtl's tip loss coefficient, tangential and axial flow induction factors of the wind turbine were analyzed systematically. X-FOIL was used to acquire lift and drag coefficients of the 2-D airfoils and Viterna-Corrigan formula was used o interpolate he aerodynamic characteristics in post-stall region. Also, aerodynamic characteristics, measured in a wind tunnel to calculate he power coefficient was applied. The comparative results such as axial and tangential flow factors, power coefficients were presented in this study. Power coefficient, calculated by in-house code was compared with the GH-Bladed result. The difference of the aerodynamic characteristics caused the difference of the performance characteristics as variation as TSR.

Rotor Blade Design of a 1MW Class HAWT and Evaluation of Aerodynamic Performance Using CFD Method (1MW급 수평축 풍력터빈 로터 블레이드 설계 및 CFD에 의한 공력성능 평가)

  • Mo, Jang-Oh;Lee, Young-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.1
    • /
    • pp.21-26
    • /
    • 2012
  • In this investigation, the aerodynamic performance evaluation of a 1MW class blade has been performed with the purpose of the verification of target output and its clear understanding of flow field using CFD commercial code, ANSYS FLUENT. Before making progress of CFD analysis the HERACLES V2.0 software based on blade element momentum theory was applied for confirmation of quick and approximate performance in the preliminary stage. The blade was designed to produce the target output of a 1MW class at a rated wind speed of 12m/s, which consists of five different airfoils such as FFA W-301, DU91-W250, DU93-W-210, NACA 63418 and NACA 63415 from hub to tip. The mechanical power by CFD is approximately 1.195MW, which is converted into the electrical power of 1.075MW if the system loss is considered to be 0.877.