• Title/Summary/Keyword: 풍력발전 시스템

Search Result 794, Processing Time 0.036 seconds

Fatigue Strength Evaluation of Wind Turbine Hub (풍력 터빈 허브의 피로강도 평가)

  • Lee, Hyun-Joo;Koh, Jang-Wook;Oh, Si-Doek
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1033-1038
    • /
    • 2003
  • A wind turbine obtains its power input by converting the force of the wind into a torque (turning force) acting on the rotor blades. The amount of energy which the wind transfers to the rotor depends on the density of the air, the rotor area, and the wind speed. Because it has long term operating life and very complex load condition, the fatigue strength of each component must be considered. In this paper, we calculated the load condition by wind using a combined blade elemental theory and a FEM based analytical approach was use to evaluate the fatigue strength of a Hub of wind turbine. The effect of tensile mean stress was taken into account by the modified Goodman diagram. Using this approaches, we evaluated the fatigue strength of hub and main shaft and improved the design.

  • PDF

Modeling and Analysis of Wind Turbine Generating System at Haeng-Won in Jeju Island (제주 행원 풍력발전 시스템의 모델링 및 해석)

  • Jeon Young-Jin;Kim Eel-Hwan
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.563-566
    • /
    • 2002
  • This paper presents the modeling and analysis of wind turbine generating system(WTGS) using doubly fed induction machine as a generator Generally, wind turbine generating system is composed of complicated machinery. So it is very difficult to present the mathematic model. This means that WTGS has a nonlinear system. Using the real output data from the WTGS for one year, it is simply possible to express the rotor and gear coupling system as a torque generator according to wind speed. Also, the modeling of electrical system can be able to present using the data sheet from the company. To analyze the proposed method, computer simulation using Psim program are presented to support the discussion.

  • PDF

Grid-Connected Wind Power Generation System Using Cage-Type Induction Generators (농형 유도발전기를 이용한 계통 연계형 풍력발전 시스템)

  • Kim Hyeung-Gyun;Abo-Khalil A.;Lee Dong-Choon;Seok Jul-Ki
    • Proceedings of the KIPE Conference
    • /
    • 2003.11a
    • /
    • pp.73-76
    • /
    • 2003
  • This paper proposes a maximum output power control of grid-connected wind power generation system using cage-type induction generators. For generator control, indirect vector control is used, where d-axis current controls the excitation level and q-axis current controls the generator speed. The generated power flows into the utility through the grid-side converter, by which the do link voltage is controlled to be constant and the ac current is controlled in sinusoid and. The generator speed is adjusted according to wind speed for extracting maximum power generation. Experimental results are shown to verify the validity of the proposed scheme.

  • PDF

A Study on the Maximum Power Control For Cage-Type Induction Generators (최대 출력 제어 기법을 이용한 농형 유도 발전기 제어에 관한 연구)

  • Hong, Jeng-Pyo;Jeong, Jong-Won;Won, Tae-Hyun;Kwon, Soon-Jae
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.560-562
    • /
    • 2010
  • 본 연구의 목적은 농형 유도 발전기를 이용한 가변속 독립 운전형 풍력 발전 시스템의 최대 전력 추종 제어기법을 제안한다. 제안된 기법은 M-G 세트로 구성하여 풍력터빈의 역할을 하는 터빈 시뮬레이터를 직류전동기의 토크제어를 이용하여 구현하였다. 농형 유도발전기는 벡터제어를 기본으로 간접 벡터제어를 위하여 유도발전기를 좌표 변환하여 모델링하고 이것을 기초로 제어알고리즘을 도출하였다.

  • PDF

Pitched Roof-Building Integrated Wind Turbine System Performance Estimation (건물 지붕 구조를 활용한 건물일체형 풍력발전시스템의 성능 예측)

  • Choi, Hyung-Sik;Chang, Ho-Nam
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.324-327
    • /
    • 2008
  • We simulated the performance improvement of a wind turbine installed on the pitched roof-building(apartment in urban area, 50m height). A nozzle shape wind guide is added on the roof of a model apartment. The nozzle-diifuser structure effects for the free stream wind (average 4m/s, 50m height in Incheon) is studied by a basic CFD analysis. This paper examines the effects of roof structure on the wind velocity and the wind distortion effects by a front building. The possible wind power generation capacity on building roof in urban is calculated.

  • PDF

A Study on the Development of the Web-based Monitoring System for the Wind Turbine Powers (웹 기반 풍력발전 모니터링 시스템 개발에 관한 연구)

  • Kim, In-Su;Kim, Sung-Sik;Choi, Young-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.1147-1148
    • /
    • 2006
  • The increase of exhaust gas which is caused by with the industry activity which follows in the Industrial Revolution of the human being has had an influence on the globe climate system so that causes the problem of the greenhouse effect. As a comprehensive countermeasures, it has been prompted to save energy, build a structure environmentally friendly and use renewable energy sources that are continually replenished by nature-the sun, the wind, the Earth's heat, and plants. In addition, new technologies that turn these fuels into usable forms of energy-most often electricity, but also heat, chemicals or mechanical power have been applied actively to the social infrastructure. Therefore, there should be methods to manage forms of renewable energy effectively and securely. This paper proposes the web-based monitoring system for the wind power system of these methods and introduces the real web-based monitoring system installed in Daegwallyeong.

  • PDF

A Basic Study on the Desist of Vertical Axis Darrieus Turbine for Wind-Power Generating System (수직축 Darrieus 풍력발전 시스템의 설계에 관한 기초연구)

  • Seo, Young-Taek;Kim, Gi-Seung;Oh, Chul-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.82-84
    • /
    • 1994
  • This paper presents a design of vertical axis Darrieus wind turbine for wind-power generating system. The wind turbine consists of two troposkien blades, diameter is 10m approximately, and chord length 380mm, tip ratio speed 4. The design of turbine is laid for the main data of rated wind speed 10m/s, turbine speed 78rpm, the generating power is estimated to 25kW, and this is contorted to commercial power line by means of three phase synchronous generator-inverter system.

  • PDF

Design of a Small-Scale Motor-Generator System for a Large Wind Turbine (대형 풍력발전기용 소형 모터-발전기 시스템 설계)

  • Lim, Chae Wook
    • The KSFM Journal of Fluid Machinery
    • /
    • v.20 no.1
    • /
    • pp.48-52
    • /
    • 2017
  • Small-scale motor-generator sets have been used in laboratories for verification of real large wind turbines whose rated power are more than 1 MW. In this paper, a result of designing a small-scale motor-generator system, which is composed of motor, gear box, flywheel, and generator, is presented in the aspect of speed response. Design objective is to make a small-scale motor-generator system have the same time constant and optimal tip speed ratio region as a real MW wind turbine. A small-scale 3.5 kW motor-generator system for emulating response of a 2 MW wind turbine is considered and designed.

Performance of PI Controller for Maximum Power Extraction of a Grid-Connected Wind Energy Conversion System (계통연계 풍력발전 시스템의 최대출력 제어를 위한 PI 제어기의 성능 분석)

  • No, Gyeong-Su;Ryu, Haeng-Su
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.8
    • /
    • pp.391-397
    • /
    • 2002
  • This paper presents a modeling and simulation of a PI controller for maximum power extraction of a grid-connected wind energy conversion system with a link of a rectifier and an inverter. It discusses the maximum power control algorithm fnr a wind turbine and proposes, in a graphical form, the relationships of wind turbine output, rotor speed, power coefficient, tip-speed ratio with wind speed when the wind turbine is operated under the maximum power control. The control objective is to always extract maximum power from wind and transfer the power to the utility by controlling both the Pitch angle of the wind turbine blades and the inverter firing angle. Pitch control method is mechanically complicated, but the control performance is better than that of the stall regulation method. The simulation results performed on MATLAB will show the variation of generator's rotor angle and rotor speed, pitch angle, and generator output.

A Study of Stand Alone Small Wind Turbine Systems (독립형 소형 풍력발전 시스템에 관한 연구)

  • Kim, Hyoung-Gii;Kong, Jeong-Sik;Seo, Young-Taek;Oh, Chul-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1005-1007
    • /
    • 2005
  • Small wind turbines are becoming a viable technology option to supply electricity to landowners. These systems provide energy security, product relatively no environmental harm, and in an appropriate setting can be quite cost-competitive with traditional electricity options. This paper is dealing with the methods how to overcome such inconvenience and with the analysis of characteristic and a field test with a prototype of the stand alone wind turbine was performed. The method applies to small systems, equipped with a coreless axial-flux permanent magnet(AFPM) generator in the turbine, a dc-dc converter and batteries. The analysis concentrates on the effect of the load on the power-wind speed curve of the turbine. The system is designed for direct driven, coupled with turbine and generator with a rated power of, 3kW.

  • PDF