• Title/Summary/Keyword: 풍력발전 시스템

Search Result 794, Processing Time 0.029 seconds

Development of 30kw HAWT/VAWT hybrid wind power system (30kw급 수직/수평축 통합형 풍력발전 시스템 개발)

  • Shinn, Chan;Kim, Ji-Ern;Lim, Jong-Youn;Song, Seung-Ho;Rho, Do-Whan;Kim, Dong-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.203-206
    • /
    • 2001
  • A 30kw Dual rotor Turbines HAWT/VAWT combined wind turbine system that can drastically enhance the power production capability compared to conventional Single Rotor Turbine HAWT system. The combined system that takes advantage of strong point of both horizontal and vertical Axis wind turbine system developed by a venture firm KOWINTEC of Chonbuk national university. The HAWT/VAWT hybrid system has been successfully field tested and commercial operating since Feb. 12, 2001 in Hae-chang rest park, Bu-an county near the Sae Man-Kum Sea Dike. This paper will briefly describe the field test results performance and a special aerodynamic structure with bevel-planetary gear box of Dual Rotor Wind Turbine system.

  • PDF

Reduction of Harmonics and Compensation of Reactive Power about Wind Power Generation System Connected to Grid (계통 연계형 풍력발전 시스템의 고조파 저감 및 무효전력 보상)

  • Kim, Yeong-Min;Hwang, Jong-Sun;Kim, Jong-Man;Park, Hyun-Chul;Song, Seung-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.1093-1096
    • /
    • 2002
  • In this paper, a novel multi voltage inverter system is proposed for reductions of harmonics, which can compensate reactive power. At first, we remove capacitor at input side for reactive power compensation. Secondly, by adding DC voltage to the filter capacitor, it can control power factors as lead-phase according to alterations of loads at power reception. Thirdly, if winding and single phase-bridge inverter(auxiliary circuit) is installed to DC power for reduction of harmonic, waveform of output voltages become to 36-steps. Thus, SVC(static var compensator) systems which can reduce harmonics are designed.

  • PDF

The control of maximum power output for a grid-connected wind turbine system by using pitch control method (피치 제어를 이용한 계통연계 풍력발전 시스템의 최대출력 제어)

  • Ryu, Haeng-Soo;Ro, Kyoung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2001.05a
    • /
    • pp.159-161
    • /
    • 2001
  • This study is for the pitch control of blade, used in most horizontal-axis wind turbine systems, to sustain the maximum power output supplied to grid. The control of a blade can be divided into a stall regulation and a pitch control methods. The stall regulation method using an aerodynamic stall is simple and cheap, but it suffers from fluctuation of the resulting power. Pitch control method is mechanically and mathematically complicated, but the control performance is better than that of the stall regulation method. In this paper 2.5MW MOD-2 wind turbine system is adopted to be controlled by a pitch controller with PI method. The simulation performed by MA TLAB will show the variation of frequency, generator output, and pitch angle.

  • PDF

A Study on Design and Test for Composite Blade of Small Scale Wind Turbine System (소형 풍력발전 시스템용 복합재 블레이드의 설계 및 시험에 관한 연구)

  • Kong Changduk;Bang Johyug;Park Jongha;Oh Kyungwon
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.125-130
    • /
    • 2004
  • This study proposes a development for the l-kW class small wind turbine system, which is applicable to relatively low wind speed region like Korea and has the variable pitch control mechanism. In the aerodynamic design of the wind turbine blade, parametric studies were carried out to determine an optimum aerodynamic configuration which is not only more efficient at low wind speed but whose diameter is not much larger than similar class other blades. A light composite structure, which can endure effectively various loads, was newly designed. In order to evaluate the structural design of the composite blade, the structural analysis was performed by the finite element method. Moreover both structural safety and aerodynamic performance were verified through the prototype test.

  • PDF

A Study of Strength Analysis for Nacelle Cover of 2MW Wind Turbine System (2MW 풍력발전시스템 너셀커버의 강도해석에 대한 연구)

  • Ko, Woo-Sik;Lee, Hyoung-Woo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.1
    • /
    • pp.20-26
    • /
    • 2008
  • The nacelle cover and nosecone are made of composite materials, especially the stiffener is added in the nacelle cover in order to enhance it's stiffness. The nacelle cover consists of all three covers of left, right side cover and upper cover and each cover is connected with bolts. Also, the nacelle cover and nacelle frame are connected with bolts. The nacelle cover and nosecone have a important role to prevent the components of nacelle and rotor from external circumstances such as snow, rain and wind. Therefore, it is necessary to analyze and evaluate the strength and deformation for them in the design level. According to GL Wind Specifications, this paper shows the results that nacelle cover of 2MW wind turbine satisfy the strength and deformation throughout analysis using Patran/Nastran programs.

Numerical Analysis of Wind Turbine of Drag Force Type with change of Blade Number and Pitch Angle (수직항력식 터빈을 이용한 풍력발전 시스템의 형상 변화 및 피치각 변화에 관한 유동해석)

  • Park C.;Park G. S.;Park W. G.;Yoon S. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.61-64
    • /
    • 2004
  • To analyze the performance of Wind turbine of the drag force type, 3-D RANS equations were solved by the iterative time marching method on sliding multiblock grid system. The numerical flow simulations by changing blade number and pitch angle were carried out : blade number = 15, 20 circumferentially; pitch angle = $30^{\circ},\; 50^{\circ}$ radially. The torque coefficient was also calculated.

  • PDF

A Study on Load Evaluation and Analysis for Foundation of the Offshore Wind Turbine System (해상풍력 하부구조물 하중영향평가 및 해석기술연구)

  • Kwon, Dae-Yong;Park, Hyun-Chul;Chung, Chin-Wha;Kim, Yong-Chun;Lee, Seung-Min;Shi, Wei
    • New & Renewable Energy
    • /
    • v.6 no.3
    • /
    • pp.39-46
    • /
    • 2010
  • With growing of wind turbine industry, offshore wind energy is getting more attention in recent years. Among all the components of offshore wind turbines, the foundation of the offshore wind turbine plays a key role in stability of whole system. In this work, the 5 MW NREL reference wind turbine with rated speed of 11.4 m/s is used for load calculation. Wind and wave loads are calculated using GH-Bladed (Garard Hassan) and FAST (NREL). Additionally, FE simulation is carried out to investigate the wave effect on the support structure. Meanwhile, this work is to simulate systemic and optimized load cases for the foundation analysis of wind turbine system.

A Study on the Suitability of Suction Caisson Foundation for the 5Mw Offshore Wind Turbine (5MW급 해상풍력발전시스템용 Suction Caisson 하부구조물 적합성 연구)

  • Kim, Yong-Chun;Chung, Chin-Wha;Park, Hyun-Chul;Lee, Seunug-Min;Kwon, Dae-Yong;Shi, Wei
    • New & Renewable Energy
    • /
    • v.6 no.3
    • /
    • pp.47-54
    • /
    • 2010
  • Foundation plays an important role in the offshore wind turbine system. Different from conventional foundations, the suction caisson is proven to be economical and reliable. In this work, three-dimensional finite element method is used to check the suitability of suction caisson foundation. NREL 5MW wind turbine is chosen as a baseline model in our simulation. The maximum overturning moment and vertical load at the mudline are calculated using FAST and Bladed. Meanwhile the soil-structure interaction response from our simulation is also compared with the experiment data from Oxford university. The design parameter such as caisson length, diameter of skirt and spacing of multipod are investigated. Accordingly based on these parameters suggestions are given to use suction caisson foundations more efficiently.

Study about the Design of Special Blade and Simulation for Wind Generation system (풍력발전 시스템의 특수 블레이드 설계 및 시뮬레이션에 관한 연구)

  • Yoon, Jeong-Phil;Lee, Gi-Je;Yoon, Hyung-Sang;Yoon, Seok-Am;Cha, In-Su
    • Proceedings of the KIEE Conference
    • /
    • 2004.04a
    • /
    • pp.192-195
    • /
    • 2004
  • Into investment expense that wind generation system that is one of clean energy is less than existent energy in narrow shipfitter maximum effect to source of energy that have Eoteulsu evaluate. There is shortcoming that Blade structure of existent aerogenerator faces at problem of safety accident in overpopulated area and noise and have additional expense of supply of electric power equipment. In this paper, We wish to supplement problem that is such through design of special Blade structure that have noise reduction and stability. Wish to achieve design and simulation of blade to use CATIA for this, and analyze adaptedness of system.

  • PDF

Modeling and Characteristic Analysis of Grid-connected Wind Turbine Generation System at MATLAB & SIMULINK (MATLAB & SIMULINK 에서 계통연계 풍력발전 시스템의 모델링과 특성해석)

  • An, Hae-Joon;Kim, Hyun-Goo;Jang, Gil-Soo;Ko, Seok-Whan;Jang, Moon-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1168-1169
    • /
    • 2008
  • This study suggests a modeling of grid-connected wind turbine generation systems and performs simulation according to increase/decrease of real wind speed. Matlab & Simulink implemented modeling of grid-connected wind turbine generation system. Terminal voltage, grid voltage, and active/reactive power shall be observed following the performance of simulation.

  • PDF