• Title/Summary/Keyword: 풍력발전터빈

Search Result 190, Processing Time 0.026 seconds

Multi-Point Design Optimization of 5MW HAWT Blade (5MW급 수평축 풍력발전 블레이드의 다점 최적설계)

  • Park, Kyung-Hyun;Jun, Sang-Ook;Kim, Sang-Hun;Jung, Ji-Hun;Lee, Ki-Hak;Jeon, Yong-Hee;Choi, Dong-Hoon;Lee, Dong-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.474-477
    • /
    • 2009
  • 본 연구에서는 5MW급 수평축 풍력발전 블레이드에 대한 정격풍속과 낮은 풍속 영역을 고려하여 풍속에 대한 다점 최적설계를 수행하였다. 다점 최적설계를 수행하기 위해 블레이드 해석은 Blade Element and Momentum theory를 이용 하였으며, 설계 시 적용된 기저형상은 NREL에서 제안한 5MW급 풍력터빈 블레이드이다. 최적화 과정을 통해 얻어진 최적해의 집합에 대하여 L2 Norm을 통한 파레토분석을 하였으며, 이를 통해 기저형상의 연간 에너지생산량과 설비 이용률을 보다 향상 시킬 수 있었다.

  • PDF

Aerodynamic and Structural Design for Medium Scale Horizontal Axis Wind Turbine Rotor Blade with Composite Material (복합재를 이용한 수평축 풍력터빈 회전날개의 공력 및 구조설계에 관한 연구)

  • 공창덕;김기범;오동우;방조혁;김학봉;김종식;유지윤
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.22-22
    • /
    • 1997
  • 무공해 에너지원은 화석에너지의 고갈과 환경오염의 심각한 문제로 인하여 절실히 요구되고 있는 실정이다. 그중 풍력발전 시스템은 타 에너지원에 비해 여러 가지 측면에서 유리한 점을 가치고 있다. 본 연구에서는 500Kw급 풍력발전 시스템을 개발함에 있어, 적합한 공력 성능 및 구조성능을 가지는 회전날개 설계과정을 수행하였다. 공력설계는 운용지역의 풍황을 고려하여 회전날개의 외형을 결정하였고 이를 바탕으로 공력성능해석이 수행되었으며, 구조설계는 복합재료를 사용하여 쉘-스파 구조를 갖도록 설계하여 굽힘 및 비틀림 그리고 피로수명에 대한 구조해석이 수행되었다. 그 결과 4m/s의 미풍에서도 운용가능하며, 12m/s에서는 정격출력 550Kw를 생산할 수 있는 형상이 설계되었고, 또한 20년 이상의 피로수명이 확보되었으며, 공질 등의 동적인 문제도 발생하지 않음을 확인하였다.

  • PDF

The study on substructure design and analysis for 5MW offshore wind turbine (5MW급 해상풍력 하부구조물 설계 및 해석에 관한 연구)

  • Sun, Min-Young;Lee, Sung-Bum;Lee, Ki-Yeol;Moon, Byung-Young
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.9
    • /
    • pp.1075-1080
    • /
    • 2014
  • This study aims at dedicating to relevant technology fields by suggesting design methods of structures and estimating their safety in relation to substructure for offshore wind power requiring high safety to various environment conditions. Especially, with respect to 5MW Offshore Wind Power System, this study will provide information about major wind directions and duration in combination with the developing wave climate at the test field. Therefore, connections between wind fields and approaching wave trains will be estimated and their intensity, direction and time shift will be pointed out. Furthermore, the local pressure distribution of breaking waves will be investigated by physical and numerical modeling. The currently applied structural and fatigue assessment of support structures for offshore wind energy converters is based on common design rules. Normally, constructions in structural engineering are treated as limited, single structures. This means that varying aspects of manufacturing are considered by high safety factors.

Design and Structure Analysis of a Tower Service Lift for Offshore Wind Power System (해상풍력발전시스템 타워서비스리프트 설계 및 구조해석)

  • Choi, Young-Do;Son, Sung-Woo;Jang, Ho-Choul;Choi, Nak-Joon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.1
    • /
    • pp.101-108
    • /
    • 2012
  • The purpose of this study is to establish a design method of tower service lift for offshore wind power system, as well as to conduct structure analysis of the service lift system. The service lift system will be built in the internal area of tower of the offshore wind power system. Design and structure analysis for the tower service lift system are conducted to clarify the stability and reliability of the system. Main objective of the design is to secure sufficient capability of transportation of workers and equipment with satisfactory performance within the designed tolerance limit. Total deformation and equivalent stress of the lift system by external load are examined using the results of structure analysis.

Software Development for the Performance Analysis of the HAWT based on BEMT (BEMT를 적용한 수평축 풍력터빈 성능해석 소프트웨어의 개발)

  • Kim, Beom-Seok;Nam, Cheong-Do;Lee, Young-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.11a
    • /
    • pp.575-578
    • /
    • 2005
  • The optimum design and the performance analysis software called POSEIDON for the HAWT (Horizontal Axis Wind Turbine) was developed by use of BEMT. The Prandtl's tip loss theory was adopted to consider the blade tip loss. The lift and the drag coefficient of S-809 airfoil were predicted via X-FOIL and also the post stall characteristics of S-809 were estimated by the Viterna's equations. All the predicted aerodynamic characteristics are fairly well agreed with the wind tunnel test results, performed by Sommers in Delft university of technology. The rated power of the testing rotor is 20kW(FIL-20) at design conditions. The experimental aerodynamic parameters and the X-FOIL data were used for the power prediction of the FIL-20 respectively. The comparison results shows good agreement in power prediction.

  • PDF

A Study on the Maximum Power Control For Cage-Type Induction Generators (최대 출력 제어 기법을 이용한 농형 유도 발전기 제어에 관한 연구)

  • Hong, Jeng-Pyo;Jeong, Jong-Won;Won, Tae-Hyun;Kwon, Soon-Jae
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.560-562
    • /
    • 2010
  • 본 연구의 목적은 농형 유도 발전기를 이용한 가변속 독립 운전형 풍력 발전 시스템의 최대 전력 추종 제어기법을 제안한다. 제안된 기법은 M-G 세트로 구성하여 풍력터빈의 역할을 하는 터빈 시뮬레이터를 직류전동기의 토크제어를 이용하여 구현하였다. 농형 유도발전기는 벡터제어를 기본으로 간접 벡터제어를 위하여 유도발전기를 좌표 변환하여 모델링하고 이것을 기초로 제어알고리즘을 도출하였다.

  • PDF

Software Development for the Performance Analysis of the HAWT based on BEMT (BEMT를 적용한 수평축 풍력터빈 성능해석 소프트웨어의 개발)

  • Kim, Beom-Seok;Lee, Young-Ho
    • New & Renewable Energy
    • /
    • v.1 no.4 s.4
    • /
    • pp.38-42
    • /
    • 2005
  • The optimum design and the performance analysis software called POSEIDON for the HAWT [Horizontal Axis Wind Turbine] was developed by use of BEMT. The Prandtl's tip loss theory was adopted to consider the blade tip loss. The lift and the drag coefficient of S-809 airfoil were predicted via X-FOIL and also the post stall characteristics of S-809 were estimated by the Viterna's equations. All the predicted aerodynamic characteristics are fairly well agreed with the wind tunnel test results, performed by Sommers in Delft university of technology. The rated power of the testing rotor is 20kW[FIL-20] at design conditions. The experimental aerodynamic parameters and the X-FOIL data were used for the power prediction of the FIL-20 respectively. The comparison results shows good agreement in power prediction.

  • PDF

A Numerical Study on the Aerodynamic Characteristics for a HAWT of NREL Phase VI (NREL Phase VI 수평축 풍력터빈의 공력특성에 관한 수치적 연구)

  • Mo, Jang-Oh;Lee, Young-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.886-895
    • /
    • 2009
  • The purpose of this work is to compare and analyze computed results with experimental data of NREL (National Renewable Energy Laboratory) Phase VI for the whole operating conditions of various wind speeds using $\kappa-\omega$ turbulence model provided in the commercial code, FLUENT. Performance results such as power coefficient, shaft torque, pressure coefficient show a good agreement with experimental data. But, root bending moment is over-predicted than the experimentally measured value by about 30% for the whole operating conditions because of indefinite measurement reference. Nevertheless, these results qualitatively show a good tendency in the aspect of aerodynamic performance. As wind speed increases, streamlines on the surface of blade show more and more complex pattern.

Conceptual Design of Self-Weighing Support Structure for Offshore Wind Turbines and Self-Floating Field Test (자중조절형 해상풍력 지지구조 개념설계 및 부유이송 현장시험)

  • Kim, Seoktae;Kim, Donghyun;Kang, Keumseok;Jung, Minuk
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.4
    • /
    • pp.631-638
    • /
    • 2016
  • Offshore wind power can be an alternative for onshore wind power which suffers from not only civil complaints regarding to landscape damage and noise but also wind power siting due to lack of onshore site candidates. Compared to onshore wind power, offshore wind power is free from these problems considering that generally the sites are far enough from the coast. And more electricity is generated in offshore wind turbines due to abundant offshore wind resources. However high installation costs of offshore turbines could deteriorate the economical efficiency. The main cause of the high installation costs comes from a long-term lease of the heavy marine equipment and the consequential high rental cost. In this paper, the conceptual design of the support structure for offshore wind turbines will be suggested for the installation of them with less heavy marine equipment.

A Study on Optimmal Design of Filament Winding Composite Tower for 2 MW Class Horizontal Axis Wind Turbine Systems (2 MW급 대형 수평축 풍력발전시스템을 위한 필라멘트 와인딩 복합재 타워의 최적설계에 관한 연구)

  • Lim, Sung-Jin;Kong, Chang-Duk;Park, Hyun-Bum
    • Composites Research
    • /
    • v.25 no.2
    • /
    • pp.54-61
    • /
    • 2012
  • In this study, a specific structural design procedure for 2 MW class glass/epoxy composite wind turbine system towers is newly proposed through load case study, trade-off study, optimal structural design and structural analysis. Optimal tower design is very important because its cost is about 20% of the wind turbine system's cost. In the structural design of the tower, three kinds of loads such as wind load, blades, nacelle and tower weight and blade aerodynamic drag load should be considered. Initial structural design is carried out using the netting rule and the rule of mixture. Then the structural safety and stability are confirmed using a commercial finite element code, MSC NASTRAN/PATRAN. The finally proposed tower configuration meets the tower design requirements.