• Title/Summary/Keyword: 풍량

Search Result 183, Processing Time 0.024 seconds

The On-Line Diagnostic Test of Fault Diagnosis System for Air Handling Unit (공조설비용 고장진단시스템의 실시간 진단실험)

  • 소정훈;유승신;경남호;신기석
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.8
    • /
    • pp.787-795
    • /
    • 2001
  • An experimentation on the on-line fault detection and diagnosis(FDD) system has been performed with HVAC system in he experimental building constructed inside the large scale environmental chamber. Personal computer with a home-made FDD program by pattern recognition method utilizing artificial neural network was connected on-line via Ether-net TCP/IP to the supervisory control server for HVAC system. The FDD program monitored the HVAC system by 1 minuted interval. The results showed that he FDD program detected the sudden or abrupt faults such s those in fans, sensors and heater, etc.

  • PDF

An Experimental Study on Performance and Flow Characteristics of Automotive Sirocco Fan (자동차용 시로코팬의 성능 및 유동특성에 관한 실험적 연구)

  • 유성연;이대웅
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.11
    • /
    • pp.954-963
    • /
    • 2002
  • For the optimal design of an automotive blower system, effects of the scroll cut-off starting angle, the clearance between blade tip and bellmouth, and the scroll expansion angle on the performance of sirocco fan are investigated experimentally. Best performance is achieved at fan exposure ratio $\Deltae/r_c$,/TEX> =1.0, and clearance ratio $\DeltaeC/C=0.62. Flow characteristics inside sirocco fan are also studied by using LDV. Flow patterns in the inside of fan can be classified into three regions. Velocity vector has the same direction as rotational direction of fan at 0~$120^{\circ}$, toward the fan blades at 150~$180^{\circ}$, and opposite direction at 210~$330^{\circ}$. Turbulent intensity is relatively high near the cut-off edge in the scroll housing.

Air Flow Prediction and Experiment by T-Method According to Duct Layout on House Ventilation System (주택환기시스템의 덕트 Layout에 따른 T-Method의 풍량 예측 및 실험)

  • Joo, Sung-Yong;Yee, Jurng-Jae
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.523-528
    • /
    • 2008
  • The accurate distribution of flow rate has been a very important part to control the air change rate since introduction of house ventilation system. An inappropriate selection of fan due to incorrect prediction of pressure loss in duct brings energy loss. In the previous study the pressure loss of general spiral duct was measured and database was constructed for finding correct loss factors in fitting upper stream. The purpose of this study is to compare and investigate the error range of flow rate by applying T-Method to bilateral symmetry and asymmetry layout of duct. The results of this study are as following. It is demanded to decide accurate size under duct design for house ventilation system. Because the small amount of Flow rate was considered at that time. The error range was 3.17% on case1 and 3.52% on case2. The error range difference was 0.35%.

  • PDF

A Method for Improving Air Distribution Performance at the Residence Ventilation System (주거 환기 시스템의 공기 분배 성능 개선 방안)

  • Park, Eun-Jun;Kim, Yong-Bong;Na, Hee-Hyoung;Lee, Sang-Ki
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.589-593
    • /
    • 2007
  • In the mechanical ventilation system, it is a fundamental condition to distribute the air equally to the each room. In this study, distribution performance of the air distributor which generally connected to a circular duct was investigated by simulation and experiment. In the first CFD analysis, maximum air flow rate deviation was an 63% in the air distributor model. After numbers of model modification and simulation, maximum flow rate deviation was reduced to 19% in the final simulation model. An air distributor which used in the experiment was produced by using data obtained from the final analysis. When experimental result was compared with analysis result, there was a deviation difference as much as 9%.

  • PDF

A Study on Smoke Movement by Using Large Eddy Simulation I. Smoke Control Systems and Extraction Flowrate (대와류모사를 이용한 연기이동의 연구 I. 제연방식과 배기풍량)

  • 박외철
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.2
    • /
    • pp.40-45
    • /
    • 2003
  • To evaluate the smoke control systems, the large eddy simulation turbulence model based Fire Dynamics Simulate was applied to a 2m $\times$ 2m $\times$ 2.4m room with an opening. The smoke removal rate was investigated for three different smoke control systems: ventilation, extraction and pressurization. When the opening was closed, the smoke removal rates of the smoke control systems were almost the same as expected. The pressurization system showed a lower smoke removal rate compared with the other two smoke control systems for the room with the opening, and hence the pressurization system might not be efficient for a place with large openings. It was shown that the lower extraction flowrate is, the longer time the ventilation system requires to remove smoke. From these results, the ventilation system is recommended for subway stations where several large openings exist.

A Study on Development and Performance Test of an Air Purify-sterilizer (공기정화 살균기 개발 및 성능검증 연구)

  • Jung, Jae-Yoon;Chang, Jo-Won
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.14 no.3
    • /
    • pp.51-59
    • /
    • 2006
  • The air purity-sterilizer was developed and the CFD and experimental studies were carried out in order to investigate the performance of a air purity-sterilizer. Overhaul and exchange efficiency were increased by the modularization of the air purity-sterilizer. The good performance was validated by the hot-wire measurements and flow simulations in the room. Mean velocities at the exit of the air purity-sterilizer were 0.91, 1.62, 1.99, and 6.14 m/sec according to the fan mode. And the flow visualization of pured air was shown by using CFD flow simulation in the room of 24, 50 pyeong. The results show that the air purity-sterilizer has a high performance enough to produce air purity-sterilizer on a commercial scale.

  • PDF

A Study on the Performance of Heat Recovery Ventilators for Apartment Houses (공동주택용 폐열회수형 환기장치의 성능에 관한 측정 연구)

  • Chang, Hyun-Jae;Hong, Seok-Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.1
    • /
    • pp.26-34
    • /
    • 2008
  • Heat recovery ventilator(HRV) is recommended to improve indoor air quarlity (IAQ) and energy conservation in apartment houses. Recently, in Korea, HRV is produced from many manufacturers. However, there have been not so many experiences to apply HRV in apartment houses and verification on the performance such as heat exchange efficiency, carry-over rate, internal leakage, etc. have not been carried out sufficiently. So in this study, fan performance, heat exchange efficiency, air leakage, internal exhaust leakage, external leakage and sound level of HRV were examined for selected HRV models under domestic and international standard. Results of performance test, there were need to improve latent heat exchange efficiency and sound level of HRV.

An analytical study on the fire characteristics of the small tunnel with large smoke exhaust port (대배기구 배연방식을 적용한 소형차 전용 터널의 화재특성에 관한 해석적 연구)

  • Yoo, Ji-Oh;Kim, Jin-Su;Rhee, Kwan-Seok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.3
    • /
    • pp.375-388
    • /
    • 2017
  • In order to solve the traffic congest and environmental issues, small-cross section tunnel for small car only is increasing, but there is not standard for installation of disaster prevention facility. In this study, in order to investigate the behavioral characteristics of thermal environment and smoke in a small cross section tunnels with a large port exhaust ventilation system, the A86, the U-Smartway and the Seobu moterawy tunnel, Temperature and CO concentration in case of fire according to cross sectional area, heat release rate and exhaust air flow rate were analyzed by numerical analysis and the results were as follows. As the cross-sectional area of the tunnel decreases, the temperature of the fire zone increases and the rate of temperature rise is not significantly affected by heat release rate. However, there is a difference depending on the change of the exhaust air flow rate. In the case of applying the exhaust air flow rate $Q_3+2.5Ar$ of the large port exhaust ventilation system, the temperature of the fire zone was 7.1 times for A86 ($Ar=25.3m^2$) and 5.4 time for U-smartway ($Ar=37.32m^2$) by Seobu moterway tunnel ($Ar=46.67m^2$). The CO concentration of fire zone also showed the same tendency. The A86 tunnels were 10.7 times and the U-Smartways were 9.5 times more than the Seobu moterway. Therefore, in the case of a small section tunnel, the thermal environment and noxious gas concentration due to the reduction of the cross-sectional area are expected to increase significantly more than the cross-sectional reduction rate.

In-Bin Drying of Paddy with Ambient Air: Influence of Drying Parameters on Drying Time, Energy Requirements and Quality (상온통풍에 의한 벼의 In-Bin 건조 : 건조시간, 에너지 소요량 및 품질에 미치는 건조조건의 영향)

  • Cheigh, Hong-Sik;Muhlbauer, Werner;Rhim, Jong-Whan;Shin, Myung-Gon
    • Korean Journal of Food Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.25-32
    • /
    • 1985
  • Low-temperature in-bin paddy drying has been examined to study the limitations of this drying method under Korean weather conditions, the initial moisture content of the paddy, the bulk depth and the airflow rate. The results are reported and discussed with regard to drying time, energy requirements and costs, uniformity in the moisture content of the dried kernels and, finally, the quality of the paddy. The tests carried out during the paddy-drying period in 1981 and 1982 have shown that under Korean weather conditions paddy can be dried to safe storage conditions by continuous aeration with ambient air. Depending upon the initial moisture content of the kernels(19.2%-25.5% w.b.), the bulk depth(1.1-3.5m) and the airflow $(3.0-6.9m^3\;air/m^3\;paddy/min)$ the paddy could be dried within 5 to 17 days. The energy requirements and energy costs are shown to be considerably lower than for conventional high-temperature drying. No significant changes in the quality in terms of milling yield, cracking ratio, acid value and germination were observed.

  • PDF

Application of biofilter for removing malodomus gas generated from compost factory (퇴비화 '공장에서 발생되는악취'를 제거하기 위한 Biofilter의 적용)

  • Kim, Chang-Il;Lee, Jae-Ho;Kim, Dae-Seung;Nam, Sang-Il;Nam, Yi
    • Journal of Korea Soil Environment Society
    • /
    • v.4 no.3
    • /
    • pp.45-56
    • /
    • 1999
  • A biofilter was established to remove the ammonia, which is representative nitrogen-contained malodorous gas. in a compost factory. Removal efficiency of ammonia and hydrogen sulfide also was investigated. A quantity of malodor gas produced in a compost factory was affected greatly by the weather. compost states and working condition of a fertilizing mixer, and the produced gas concentrations doubled by above various parameters. By operating a water scrubbing system for removing water-soluble malodorous gases effectively. we could improve the removal efficiency over three times. We investigated long-term stability of biofilter under continuous gas flow(SV=500h-1) for 100 days. The results showed 30 days of microbial retention time. After the days, deodorization efficiency of biofilter was kept steady state. and the removal efficiency was kept over 95% for ammonia and 97% for hydrogen so]fide. respectively. The electric consumption of the biofilter, which could treat malodorous gas of 100$\textrm{m}^3$/min, applied in the compost factory was evaluated about 80u0day and water consumption was 80~100$\ell$/day. These results concluded that the biofilter is a excellent deodorization technology as well as cost-effective for removing malodorous gas produced in a compost factory.

  • PDF