• Title/Summary/Keyword: 풀브릿지 컨버터

Search Result 109, Processing Time 0.025 seconds

Output Voltage Control Technique Using Current Forward Compensation for Phase Shifted Full Bridge Converter Without Output Capacitor (출력 커패시터가 없는 위상천이 풀브릿지 컨버터의 전류 전향 보상을 이용한 출력 전압 제어 기법)

  • Shin, You-Seung;Baek, Seung-Woo;Kim, Hag-Wone;Cho, Kwan-Yual;Kang, Jeong-Won
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.1
    • /
    • pp.40-47
    • /
    • 2022
  • At present, the low-voltage, high-current type power supply is mainly used for effective sterilization in the ballast water treatment system. Research on PSFB converters without output capacitors has been ongoing. Such converters effectively treat ballast water without a separate disinfectant through electric pulses by applying a pulse-type power to the output electrode without an output capacitor. However, in the case of the pulse-type electrolysis treatment method, voltage overshoot can occur due to abrupt voltage fluctuations when the load changes, resulting in circuit reliability problems because of the output capacitorless system. Therefore, a new voltage control algorithm is required. In this paper, we will discuss voltage control for pulsed electrolysis topology without an output capacitor. The proposed voltage control method has been verified using Simulation and experiment. The usefulness of the proposed control method has been proven by the experimental results.

Development of 8kW/L, 700kHz GaN based Auxiliary Power Module using planar matrix transformer for xEV (8kW/L, 700kHz 평면변압기를 이용한 GaN 소자 기반 친환경자동차용 LDC 개발 및 손실 분석을 통한 구조 설계)

  • Kim, Kyu-young;Kim, Sang-jin;Adhistira, Adhistira;Choi, Se-wan;Yang, Dae-ki;Hong, Seok-yong;Lee, Youn-sik;Yeo, In-yong
    • Proceedings of the KIPE Conference
    • /
    • 2019.11a
    • /
    • pp.168-169
    • /
    • 2019
  • 본 논문은 친환경자동차용 저전압 DC-DC 컨버터(Low-voltage DC-DC converter, LDC)의 고전력밀도 달성을 위한 스위칭 주파수 선정 및 구조 설계 방법을 소개한다. 위상천이 풀-브릿지(Phase-Shift Full-Bridge, PSFB) 컨버터의 손실 분석을 통해 스위칭 주파수 700kHz 선정하였으며, 냉각수 온도 65℃, 분당 8리터의 유량 기준으로 소자 온도가 110℃ 이내로 관리 되도록 고려하여 구조 설계를 수행했다. 온도 조건을 만족하면서 8kW/L의 높은 전력밀도를 달성하였으며 입력전압 200V-310V, 출력전압 12.8V-15.1V의 전압 범위를 만족하는 1.8kW 최종 시작품을 제작하여 실험으로 검증하였다.

  • PDF

PFM control method considering the Q-factor according to change the temperature (온도에 따라 변화하는 Q-factor를 고려한 PFM제어기법)

  • Lee, Jeong;Eom, Tae-Ho;Kim, Jun-Mo;Shin, Min-Ho;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.507-508
    • /
    • 2016
  • 본 논문은 LLC 공진형 풀-브릿지 컨버터의 온도에 따른 Q-factor의 변화를 고려한 PFM(Pulse Frequency Modulation) 제어기법에 대해 제안한다. 온도에 따라 L, C의 용량변화로 Q-factor는 변화하고 얻고자 하는 전압이득 값을 스위칭 주파수가 달라지는 제어로 원하는 출력 전압을 얻을 수 있다. 원하는 출력전압을 제어하기 위해서는 온도에 따라 변화하는 Q-factor를 통해 스위칭 주파수를 제어하여 원하는 전압이득 값을 얻는다.

  • PDF

New Single Stage Power Factor Correction AC/DC Converter based on Zero Voltage Switching Full Bridge Topology (영전압 스위칭 풀 브릿지 토폴로지를 기반으로 한 새로운 단일 전력 단 역률개선 AC/DC 컨버터)

  • Kim T.S;Koo G.B;Moon G.W.;Youn M.J
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.352-357
    • /
    • 2003
  • A new single stage power factor correction(PFC) AC/DC converter based on zero voltage switching(ZVS) full bridge topology is proposed. Since the series-connected two transformers act as both output inductor and main transformer by turns, the proposed converter has a wide ZVS range without additional devices for ZVS. Furthermore, since there is no need to use an output inductor, the proposed converter features high power density. The proposed converter gives the good power factor correction and low line current harmonics distortion. A mode analysis and experiment results are presented to verify the validity of the proposed converter.

  • PDF

Analysis and Design of Integrated Magnetic Circuit for Phase Shift Full Bridge Converter (위상천이 풀-브릿지 컨버터를 위한 Integrated Magnetic 회로 설계 및 해석)

  • Jang, Eun-Sung;Li, Xin-Lan;Shin, Yong-Whan;Heo, Tae-Won;Kim, Don-Sik;Lee, Hyo-Bum;Shin, Hwi-Beom
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.406-409
    • /
    • 2008
  • This paper presents the integrated magnetic circuit designing method for phase shift full bridge(PSFB) converter. The integrated magnetic circuit is implemented on redesigned of EI core. The transformer windings are located on center leg and the two inductors are located on the outer legs with air gap. Based on the equivalent circuit model, the principle of operation of the PSFB converter is explained. The operation and performance of the proposed circuit are verified on a 1.2 kW prototype converter. The analysis and design of the integrated magnetic circuit is verified through the experimental and simulation results.

  • PDF

Full Bridge Converter with Multiple Output (다출력 구조의 풀 브릿지 컨버터)

  • Cho, J.M.;Ryu, M.H.;Kim, J.H.;Baek, J.W.;Kim, H.G.
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.360-362
    • /
    • 2008
  • In this paper, an improved full bridge inverter is presented to get multiple output for UV lamp and barrier discharge. It has a structure of two equivalent half bridge inverters and one full bridge inverter. The outputs of the proposed circuit can be controlled using frequency and PWM independently. To verify the proposed circuit, theoretical analysis and experimental results has been done using a prototype power supply.

  • PDF

High-Efficiency Full-Bridge DC-DC Converter with Current-Doubler Rectifier with Asymmetric Pulse-Width Modulation (비대칭 펄스 폭 변조 방식의 배전류 정류기 회로를 적용한 고효율 풀-브릿지 DC-DC 컨버터)

  • Yang, Min-Kwon;Choi, Woo-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.3
    • /
    • pp.280-289
    • /
    • 2015
  • A high-efficiency full-bridge DC-DC converter with a current-doubler rectifier and an asymmetric pulse-width modulation is proposed. Through the asymmetric pulse-width modulation, the proposed converter achieves zero-voltage switching of power switches without the circulating currents. The proposed converter reduces the output current ripple through the current-doubler rectifier. A control strategy is suggested for the proposed converter to charge battery banks. A constant current and constant voltage charging is performed. The proposed converter achieved a higher efficiency compared with the conventional full-bridge DC-DC converter with a phase-shift modulation. The performance of the proposed converter is evaluated by the experimental results for a 1.0 kW prototype circuit.

Design of Digital Controller for Phase Shifted Full-Bridge Converter (위상 천이 풀-브릿지 컨버터의 디지털 제어기 설계)

  • Lim Jeong-Gyu;Seo Eun-Kyung;Chung Se-Kyo;Lee Hyun-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.22-24
    • /
    • 2006
  • Of all the proposed resonant techniques, the well-known phase-shifted full bridge converter remains one of the most attractive because it offers an easy way of achieving ZVS with a minimum of extra components added, which is essential for the high power applications. This paper describes the design of a digital controller for a Phase Shifted Full-bridge PWM Converter. The small-signal model is derived incorporating the effects of phase-shift control and the utilization of the transformer leakage inductance and power FET junction capacitances to achieve the zero-voltage resonant switching. Based on the derived small-signal model, the digital controller is designed in the discrete domain. The performance of designed controller is verified through the simulation.

  • PDF

Implementation of Phase Shift Full-Bridge PWM Converter Using DSP (DSP를 이용한 위상 천이 풀-브릿지 컨버터의 디지털 제어기 구현)

  • Lim Soo-Hyun;Lim Jeong-Gyu;Chung Se-Kyo;Lee Hyun-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.137-139
    • /
    • 2006
  • This paper present an implementation of digital control system for a phase-shift full-bridge converter using a digital signal processor. The digital control of phase-shift full-bridge converter provides many advantageous of easily generating various phase-shift timing and implementing a complex voltage and current control algorithm. The digital controller is implemented using the DSP TMS320F2812 and the converter and controller operation is proved through the experimental results.

  • PDF

A New Phase Shift Full Bridge Converter with Serially Connected Two Transformers (직렬 연결된 두개의 트랜스포머를 갖는 새로운 위상천이 풀 브릿지 컨버터)

  • Koo Gwan-Bon;Kim Tae-Sung;Moon Gun-Woo;Youn Myung-Joong
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.370-373
    • /
    • 2002
  • A new phase shift full bridge converter(PSFB) with serially connected two transformers is proposed. It is well suited for applications in the communication equipment of a few hundred watts. The main features of the proposed converter are a wide input voltage range, an easiness to meet the requirement for zero voltage switching (ZVS) condition at a light load, and a small output voltage ripple. Furthermore, it features high power density since serially connected two transformers can replace both a main transformer and an output inductor. A mode analysis and experimental results are presented to verify the validity of the proposed converter.

  • PDF