• Title/Summary/Keyword: 푸트레신

Search Result 5, Processing Time 0.023 seconds

Effect of biogenic amine forming and degrading bacteria on quality characteristics of Kimchi (바이오제닉 아민 생성균과 분해균이 김치의 품질 특성에 미치는 영향)

  • Lim, Eun-Seo
    • Journal of Applied Biological Chemistry
    • /
    • v.63 no.4
    • /
    • pp.375-385
    • /
    • 2020
  • The purpose of this study was to investigate the quality characteristics of kimchi prepared with a single starter culture of biogenic amines (BA)-forming lactic acid bacteria (LAB) or a combined starter cultures composed of BA-forming and BA-degrading LAB. As the fermentation proceeded, the lactic acid bacterial count, titratable acidity, and BA content in kimchi prepared with myeolchi-aekjeot were slightly higher than those of kimchi prepared with saeu-jeot. The amount and type of BA produced by LAB were mostly strain dependent rather than species specific. Among all of the isolated LAB strains, the highest levels of cadaverine, histamine, putrescine and tyramine were produced by Leuconostoc mesenteroides MBK32, Lactobacillus brevis MBK34, Lactobacillus curvatus MBK31 and Enterococcus faecalis SBK31, respectively. BA-forming and BA-degrading starter cultures played an important role in the growth rate and organic acid-producing ability of LAB in kimchi. Interestingly, BA contents in kimchi increased by adding single BA-forming LAB starter were effectively lowered by the mixed cultures with BA-degrading LAB.

Isolation and Identification of Probiotic Bacillus strain Forming Amine Oxidase from Traditional Fermented Soybean Paste (재래식 된장으로부터 아민 산화 효소를 생산하는 프로바이오틱 바실러스균의 분리 동정)

  • Lim, Eun-Seo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.6
    • /
    • pp.1535-1544
    • /
    • 2020
  • The primary objective of this study was to isolate and identify amine oxidase-producing probiotic Bacillus strains from traditional fermented soybean paste. Biogenic amines (BA)-forming bacteria isolated from the samples were identified as Bacillus sp. TS09, Bacillus licheniformis TS17, Bacillus subtilis TS19, Bacillus cereus TS23, Bacillus sp. TS30, Bacillus megaterium TS31, B. subtilis TS44, Bacillus coagulans TS46 and Bacillus amyloliquefaciens TS59. Meanwhile, B. subtilis TS04 and TS50 isolated from the same samples exhibited good probiotic properties, including the tolerance to artificial gastric juice and bile salts, the adhesion to intestinal epithelial cells, and the production of bacteriocin(s) active against BA-forming bacteria (Bacillus sp. TS30 and B. subtilis TS44). In addition, the amine oxidase produced by B. subtilis TS04 and TS50 significantly decreased the formation of BA, especially cadaverine, putrescine, and tyramine, therefore, these strains could be considered good potential probiotic candidates to prevent or reduce BA accumulation in food products.

Validation of UPLC Analysis Method for Putrescine in Lyophilized Royal Jelly (동결건조 로열젤리 내 putrescine 함량 분석을 위한 분석법 밸리데이션)

  • Hong-Min, Choi;Se-Gun, Kim;Hyo-Young, Kim;Soon-Ok, Woo;Sang-Mi, Han
    • Korean journal of applied entomology
    • /
    • v.61 no.4
    • /
    • pp.659-664
    • /
    • 2022
  • Putrescine generated by the action of microorganisms in the decay generally used as a measure of freshment in food. However, the analytical method of putrescine in freeze-dried royal jelly has not yet been established. In the present study, the UPLC method for putrescine in lyophilized royal jelly was established using C18 column. The newly established method was able to analyze putrescine accurately within 7 minutes and was validated by analytical parameters such as specificity, linearity, precision, accuracy, limit of detection, and limit of quantification. These results provide for the analytical method to evaluate the level of freshment in freeze-dried royal jelly, which will useful in further studies of safety verification.

Validation and Content Analysis of Putrescine in the Venom of Honeybee (Apis mellifera L.) (서양종꿀벌 일벌독에 함유된 putrescine 밸리데이션 및 함량 분석)

  • Choi, Hong Min;Kim, Hyo Young;Kim, Se Gun;Han, Sang Mi
    • Korean journal of applied entomology
    • /
    • v.60 no.3
    • /
    • pp.263-268
    • /
    • 2021
  • The venom of honeybees (Apis mellifera L.) is used to treat many diseases because of its anti-inflammatory and analgesic effects. Bee venom consists of several biologically active molecules and exhibits remarkable anti-cancer effects. However, biological amines, which exhibit diverse functionality such as anti-inflammatory and antibacterial effects, have not been previously reported in bee venom. In this study, we determined the content of putrescine in bee venom by using ultra-performance liquid chromatography. The specificity, accuracy, and precision of the assay were assessed, and the assay validated. The linearity of the putrescine assay was r ≥ 0.99, indicating a moderate level of putrescine in the bee venom. The limit of detection and limit of quantification were both 0.9 ㎍/mL, while the rate of recovery was 96.4%-99.9%. The relative standard deviation (RSD) of the intra-day precision and inter-day precision of the putrescine assay were 0.16% - 0.23% and 0.09% - 0.36%, respectively, with the RSD ≤ 5% indicating excellent precision. Thus, the linearity, limit of detection, limit of quantification, and recovery rate of the putrescine assay were satisfactory. The analysis of the bee venom showed that the putrescine content was 3.1 ± 0.09 mg/g. This study provides fundamental data on putrescine content in bee venom, which will prove useful in further studies of its bioactivity.

The Role of Factors Controlling the Accumulation of Biogenic Amines in Various Cheeses as Milk-Based Products: A Review (낙농유제품인 치즈에 축적된 생체 아민의 다양한 영향 인자에 관한 연구: 총설)

  • Chon, Jung-Whan;Kim, Dong-Hyeon;Kim, Hyun-Sook;Song, Kwang-Young;Lim, Jong-Soo;Choi, Dasom;Kim, Young-Ji;Lee, Soo-Kyung;Seo, Kun-Ho
    • Journal of Dairy Science and Biotechnology
    • /
    • v.32 no.2
    • /
    • pp.77-92
    • /
    • 2014
  • Fermented foods have often been implicated as causative agents in poisoning due to toxic levels of biogenic amines. Cheese, a milk-based fermented food, is the product most likely to contain potentially harmful levels of biogenic amines, such as tyramine, histamine, putrescine, and so on. Recently, the risk awareness of a dietary uptake of high loads of biogenic amines has increased. Hence, we here review the published literature on several factors known to affect the biosynthesis of biogenic amines and their accumulation in milk-based foods. Furthermore, with regard to risk analysis, we discuss the control of factors related to the synthesis and accumulation of biogenic amines as a means to reduce their incidence in milk-based products, and thus to increase food safety.

  • PDF