• Title/Summary/Keyword: 표정 분류

Search Result 118, Processing Time 0.023 seconds

The Influence of Background Color on Perceiving Facial Expression (배경색채가 얼굴 표정에서 전달되는 감성에 미치는 영향)

  • Son, Ho-Won;Choe, Da-Mi;Seok, Hyeon-Jeong
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2009.05a
    • /
    • pp.51-54
    • /
    • 2009
  • 다양한 미디어에서 인물과 색채는 가장 중심적인 요소로서 활용되므로 인물의 표정에서 느껴지는 감성과 색채 자극에 대한 감성적 반응에 연구는 심리학 분야에서 각각 심도 있게 연구되어왔다. 본 연구에서는 감성 자극물로서의 얼굴 표정과 색채가 상호 작용을 하였을 때 이에 대한 감성적 반응에 대하여 조사하는데 그 목적이 있다. 즉, 인물의 표정과 배경 색상을 배치하였을 때 인물의 표정에서 느껴지는 감성이 어떻게 변하는지에 관한 실험 연구를 진행하여 이를 미디어에서 활용할 수 있는 방안을 제시하고자 한다. 60명의 피실험자들을 대상으로 진행한 실험연구에서는 Ekman의 7가지의 universal facial expression 중 증오(Contempt)의 표정을 제외한 분노(Anger), 공포(Fear), 역겨움(Disgusting), 기쁨(Happiness), 슬픔(Sadness), 놀람(Surprising) 등의 6가지의 표정의 이미지를 인물의 표정으로 활용하였다. 그리고, 배경 색채로서 빨강, 노랑, 파랑, 초록의 색상들을 기준으로 각각 밝은(light), 선명한(vivid), 둔탁한(dull), 그리고 어두운(dark) 등의 4 가지 톤(tone)의 영역에서 색채를 추출하였고, 추가로 무채색의 5 가지 색상이 적용되었다. 총 120 장(5 가지 얼굴표정 ${\times}$ 20 가지 색채)의 표정에서 나타나는 감성적 표현을 평가하도록 하였으며, 각각의 피실험자는 무작위 순위로 60개의 자극물을 평가하였다. 실험에서 측정된 데이터는 각 표정별로 분류되었으며 배경에 적용된 색채에 따라 얼굴 표현에서 나타나는 감성적 표현이 다름을 보여주었다. 특히 색채에 대한 감성적 반응에 대한 기존연구에서 제시하고 있는 자료를 토대로 색채와 얼굴표정의 감성이 상반되는 경우, 얼굴표정에서 나타나는 감성적 표현이 약하게 전달되었음을 알 수 있었으며, 이는 부정적인 얼굴표정일수록 더 두드러지는 것으로 나타났다. 이러한 현상은 색상과 톤의 경우 공통적으로 나타나는 현상으로서 광고 및 시각 디자인 분야의 실무에서 활용될 수 있다.

  • PDF

A Study on Facial Expression Recognition using Boosted Local Binary Pattern (Boosted 국부 이진 패턴을 적용한 얼굴 표정 인식에 관한 연구)

  • Won, Chulho
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.12
    • /
    • pp.1357-1367
    • /
    • 2013
  • Recently, as one of images based methods in facial expression recognition, the research which used ULBP block histogram feature and SVM classifier was performed. Due to the properties of LBP introduced by Ojala, such as highly distinction capability, durability to the illumination changes and simple operation, LBP is widely used in the field of image recognition. In this paper, we combined $LBP_{8,2}$ and $LBP_{8,1}$ to describe micro features in addition to shift, size change in calculating ULBP block histogram. From sub-windows of 660 of $LBP_{8,1}$ and 550 of $LBP_{8,2}$, ULBP histogram feature of 1210 were extracted and weak classifiers of 50 were generated using AdaBoost. By using the combined $LBP_{8,1}$ and $LBP_{8,2}$ hybrid type of ULBP histogram feature and SVM classifier, facial expression recognition rate could be improved and it was confirmed through various experiments. Facial expression recognition rate of 96.3% by hybrid boosted ULBP block histogram showed the superiority of the proposed method.

Analysis of facial expression recognition (표정 분류 연구)

  • Son, Nayeong;Cho, Hyunsun;Lee, Sohyun;Song, Jongwoo
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.5
    • /
    • pp.539-554
    • /
    • 2018
  • Effective interaction between user and device is considered an important ability of IoT devices. For some applications, it is necessary to recognize human facial expressions in real time and make accurate judgments in order to respond to situations correctly. Therefore, many researches on facial image analysis have been preceded in order to construct a more accurate and faster recognition system. In this study, we constructed an automatic recognition system for facial expressions through two steps - a facial recognition step and a classification step. We compared various models with different sets of data with pixel information, landmark coordinates, Euclidean distances among landmark points, and arctangent angles. We found a fast and efficient prediction model with only 30 principal components of face landmark information. We applied several prediction models, that included linear discriminant analysis (LDA), random forests, support vector machine (SVM), and bagging; consequently, an SVM model gives the best result. The LDA model gives the second best prediction accuracy but it can fit and predict data faster than SVM and other methods. Finally, we compared our method to Microsoft Azure Emotion API and Convolution Neural Network (CNN). Our method gives a very competitive result.

Facial Expression Classification Using Deep Convolutional Neural Network (깊은 Convolutional Neural Network를 이용한 얼굴표정 분류 기법)

  • Choi, In-kyu;Song, Hyok;Lee, Sangyong;Yoo, Jisang
    • Journal of Broadcast Engineering
    • /
    • v.22 no.2
    • /
    • pp.162-172
    • /
    • 2017
  • In this paper, we propose facial expression recognition using CNN (Convolutional Neural Network), one of the deep learning technologies. To overcome the disadvantages of existing facial expression databases, various databases are used. In the proposed technique, we construct six facial expression data sets such as 'expressionless', 'happiness', 'sadness', 'angry', 'surprise', and 'disgust'. Pre-processing and data augmentation techniques are also applied to improve efficient learning and classification performance. In the existing CNN structure, the optimal CNN structure that best expresses the features of six facial expressions is found by adjusting the number of feature maps of the convolutional layer and the number of fully-connected layer nodes. Experimental results show that the proposed scheme achieves the highest classification performance of 96.88% while it takes the least time to pass through the CNN structure compared to other models.

Korean Facial Expression Emotion Recognition based on Image Meta Information (이미지 메타 정보 기반 한국인 표정 감정 인식)

  • Hyeong Ju Moon;Myung Jin Lim;Eun Hee Kim;Ju Hyun Shin
    • Smart Media Journal
    • /
    • v.13 no.3
    • /
    • pp.9-17
    • /
    • 2024
  • Due to the recent pandemic and the development of ICT technology, the use of non-face-to-face and unmanned systems is expanding, and it is very important to understand emotions in communication in non-face-to-face situations. As emotion recognition methods for various facial expressions are required to understand emotions, artificial intelligence-based research is being conducted to improve facial expression emotion recognition in image data. However, existing research on facial expression emotion recognition requires high computing power and a lot of learning time because it utilizes a large amount of data to improve accuracy. To improve these limitations, this paper proposes a method of recognizing facial expressions using age and gender, which are image meta information, as a method of recognizing facial expressions with even a small amount of data. For facial expression emotion recognition, a face was detected using the Yolo Face model from the original image data, and age and gender were classified through the VGG model based on image meta information, and then seven emotions were recognized using the EfficientNet model. The accuracy of the proposed data classification learning model was higher as a result of comparing the meta-information-based data classification model with the model trained with all data.

Multiclass image expression classification (다중 클래스 이미지 표정 분류)

  • Oh, myung-ho;Min, song-ha;Kim, Jong-min
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.701-703
    • /
    • 2022
  • In this paper, we present a multi-class image scene classification method based on map learning. We were able to learn from the convolutional neural network model in the dataset, classify facial scene images of multiclass people, and classify the optimized CNN model into the Google image dataset in the experiment with significant results.

  • PDF

Facial Expression Recognition with Instance-based Learning Based on Regional-Variation Characteristics Using Models-based Feature Extraction (모델기반 특징추출을 이용한 지역변화 특성에 따른 개체기반 표정인식)

  • Park, Mi-Ae;Ko, Jae-Pil
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.11
    • /
    • pp.1465-1473
    • /
    • 2006
  • In this paper, we present an approach for facial expression recognition using Active Shape Models(ASM) and a state-based model in image sequences. Given an image frame, we use ASM to obtain the shape parameter vector of the model while we locate facial feature points. Then, we can obtain the shape parameter vector set for all the frames of an image sequence. This vector set is converted into a state vector which is one of the three states by the state-based model. In the classification step, we use the k-NN with the proposed similarity measure that is motivated on the observation that the variation-regions of an expression sequence are different from those of other expression sequences. In the experiment with the public database KCFD, we demonstrate that the proposed measure slightly outperforms the binary measure in which the recognition performance of the k-NN with the proposed measure and the existing binary measure show 89.1% and 86.2% respectively when k is 1.

  • PDF

Recognizing Facial Expression Using 1-order Moment and Principal Component Analysis (1차 모멘트와 주요성분분석을 이용한 얼굴표정 인식)

  • Cho Yong-Hyun;Hong Seung-Jun
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.05a
    • /
    • pp.405-408
    • /
    • 2006
  • 본 논문에서는 영상의 1차 모멘트와 주요성분분석을 이용한 효율적인 얼굴표정 인식방법을 제안하였다. 여기서 1차 모멘트는 영상의 중심이동을 위한 전처리 과정으로 인식에 불필요한 배경의 배제와 계산시간의 감소로 인식성능을 개선하기 위함이다. 또한 주요성분분석은 얼굴표정의 특징인 고유영상을 추출하는 것으로, 이는 2차의 통계성을 고려한 중복신호의 제거로 인식성능을 개선하기 위함이다. 제안된 방법을 각각 320*243 픽셀의 48개(4명*6장*2그룹) 얼굴표정을 대상으로 Euclidean 분류척도를 이용하여 실험한 결과 전처리를 수행하지 않는 기존 방법보다 우수한 인식성능이 있음을 확인하였다.

  • PDF

Recognizing Facial Expression Using Centroid Shift and Independent Component Analysis (중심이동과 독립성분분석에 의한 얼굴표정 인식)

  • Cho Yong-Hyun;Hong Seung-Jun;Park Yong-Soo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.05a
    • /
    • pp.401-404
    • /
    • 2006
  • 본 논문에서는 영상의 중심이동과 독립성분분석에 의한 효율적인 표정 인식방법을 제안하였다. 여기서 중심이동은 얼굴영상의 1차 모멘트에 의한 전처리 과정으로 불필요한 배경을 배제시켜 계산시간의 감소 및 인식률을 개선하기 위함이다. 또한 독립성분분석은 얼굴표정의 특징으로 기저영상을 추출하는 것으로 고차의 통계성을 고려한 중복신호의 제거로 인식성능을 개선하기 위함이다. 제안된 방법을 320*243 픽셀의 48개(4명*6장*2그룹) 표정을 대상으로 Euclidean 분류척도를 이용하여 실험한 결과, 전처리를 수행치 않는 기존방법에 비해 우수한 인식성능이 있음을 확인하였다.

  • PDF

Recognition of Facial Expressions Using Muscle-eased Feature Models (근육기반의 특징모델을 이용한 얼굴표정인식에 관한 연구)

  • 김동수;남기환;한준희;박호식;차영석;최현수;배철수;권오홍;나상동
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1999.11a
    • /
    • pp.416-419
    • /
    • 1999
  • We Present a technique for recognizing facial expressions from image sequences. The technique uses muscle-based feature models for tracking facial features. Since the feature models are constructed with a small number of parameters and are deformable in the limited range and directions, each search space for a feature can be limited. The technique estimates muscular contractile degrees for classifying six principal facial express expressions. The contractile vectors are obtained from the deformations of facial muscle models. Similarities are defined between those vectors and representative vectors of principal expressions and are used for determining facial expressions.

  • PDF