• 제목/요약/키워드: 표정특징추출

검색결과 105건 처리시간 0.029초

얼굴 랜드마크 거리 특징을 이용한 표정 분류에 대한 연구 (Study for Classification of Facial Expression using Distance Features of Facial Landmarks)

  • 배진희;왕보현;임준식
    • 전기전자학회논문지
    • /
    • 제25권4호
    • /
    • pp.613-618
    • /
    • 2021
  • 표정 인식은 다양한 분야에서 지속적인 연구의 주제로서 자리 잡아 왔다. 본 논문에서는 얼굴 이미지 랜드마크 간의 거리를 계산하여 추출된 특징을 사용해 각 랜드마크들의 관계를 분석하고 5가지의 표정을 분류한다. 다수의 관측자들에 의해 수행된 라벨링 작업을 기반으로 데이터와 라벨 신뢰도를 높였다. 또한 원본 데이터에서 얼굴을 인식하고 랜드마크 좌표를 추출해 특징으로 사용하였으며 유전 알고리즘을 이용해 상대적으로 분류에 더 도움이 되는 특징을 선택하였다. 본 논문에서 제안한 방법을 이용하여 표정 인식 분류를 수행하였으며 제안된 방법을 이용하였을 때가 CNN을 이용하여 분류를 수행하였을 때 보다 성능이 향상됨을 볼 수 있었다.

간단한 사용자 인터페이스에 의한 벡터 그래픽 캐릭터의 자동 표정 생성 시스템 (Automatic facial expression generation system of vector graphic character by simple user interface)

  • 박태희;김재호
    • 한국멀티미디어학회논문지
    • /
    • 제12권8호
    • /
    • pp.1155-1163
    • /
    • 2009
  • 본 논문에서는 가우시안 프로세스 모델을 이용한 벡터 그래픽 캐릭터의 자동 표정 생성 시스템을 제안한다. 제안한 방법은 Russell의 내적 정서 상태의 차원 모형을 근거로 재정의된 캐릭터의 26가지 표정 데이터로 부터 주요 특징 벡터를 추출한다. 그리고 추출된 고차원의 특징 벡터에 대해 SGPLVM이라는 가우시안 프로세스 모델을 이용하여 저차원 특징 벡터를 찾고, 확률분포함수(PDF)를 학습한다. 확률분포함수의 모든 파라메타는 학습된 표정 데이터의 우도를 최대화함으로써 추정할 수 있으며, 이는 2차원 공간에서 사용자가 원하는 얼굴 표정을 실시간으로 선택하기 위해 사용된다. 시뮬레이션 결과 본 논문에서 제안한 표정 생성 프로그램은 얼굴 표정의 작은 데이터셋에도 잘 동작하며, 사용자는 표정과 정서간의 관련성에 관한 사전지식이 없이도 연속되는 다양한 캐릭터의 표정을 생성할 수 있음을 확인할 수 있었다.

  • PDF

동영상에서의 모델기반 특징추출을 이용한 얼굴 표정인식 (Facial Expression Recognition using Model-based Feature Extraction in Image Sequence)

  • 박미애;최성인;임동악;고재필
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2006년도 한국컴퓨터종합학술대회 논문집 Vol.33 No.1 (B)
    • /
    • pp.343-345
    • /
    • 2006
  • 본 논문에서는 ASM(Active Shape Model)과 상태 기반 모델을 사용하여 동영상으로부터 얼굴 표정을 인식하는 방법을 제안한다. ASM을 이용하여 하나의 입력영상에 대한 얼굴요소 특징점들을 정합하고 그 과정에서 생성되는 모양 파라미터 벡터를 추출한다. 동영상에 대해 추출되는 모양 파라미터 벡터 집합을 세 가지상태 중 한 가지를 가지는 상태 벡터로 변환하고 분류기를 통해 얼굴의 표정을 인식한다. 분류단계에서는 분류성능을 높이기 위해 새로운 개체 기반 학습 방법을 제안한다. 실험에서는 새로이 제안한 개체 기반 학습 방법이 KNN 분류기보다 더 좋은 인식률을 나타내는 것을 보인다.

  • PDF

실시간 감정 표현 아바타의 설계 및 구현 (Design and Implementation of a Real-Time Emotional Avatar)

  • 정일홍;조세홍
    • 디지털콘텐츠학회 논문지
    • /
    • 제7권4호
    • /
    • pp.235-243
    • /
    • 2006
  • 본 논문에서는 얼굴의 표정 변화를 인식하여 실시간으로 감정을 표현하는 아바타를 설계하고 구현하는 방법을 제안하였다. 실시간 감정 표현 아바타는 수동으로 아바타의 표정 패턴을 변화를 주는 것이 아니라 웹캠을 이용하여 실시간으로 입 모양 특징을 추출하고 추출한 입 모양의 패턴을 분석한 뒤, 미리 정의된 표정 패턴에 부합되는 것을 찾는다. 그리고 부합된 표정 패턴을 아바타에 적용하여 아바타의 얼굴 표정을 표현한다. 표정 인식 아바타는 웹캠에서 들어온 영상을 모델 접근 방법을 이용하여 보다 빠르게 입 부분을 인식할 수 있도록 하였다. 그리고 표정 패턴 추출은 표정에 따라 입 모양이 변하는 것을 이용하였다. 모델접근 방법을 이용하여 눈의 정보를 찾은 후 그 정보를 이용하여 입 모양을 추출하게 된다. 기본적으로 13가지 입 모양으로 각각의 표정을 유추하고 각 표정 패턴에 맞는 6개의 아바타를 미리 구현하여 보다 빠르게 아바타의 표정을 변할 수 있게 하였다.

  • PDF

얼굴표정을 이용한 감정인식 및 표현 기법 (Emotion Recognition and Expression using Facial Expression)

  • 주종태;박경진;고광은;양현창;심귀보
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2007년도 춘계학술대회 학술발표 논문집 제17권 제1호
    • /
    • pp.295-298
    • /
    • 2007
  • 본 논문에서는 사람의 얼굴표정을 통해 4개의 기본감정(기쁨, 슬픔, 화남, 놀람)에 대한 특징을 추출하고 인식하여 그 결과를 이용하여 감정표현 시스템을 구현한다. 먼저 주성분 분석(Principal Component Analysis)법을 이용하여 고차원의 영상 특징 데이터를 저차원 특징 데이터로 변환한 후 이를 선형 판별 분석(Linear Discriminant Analysis)법에 적용시켜 좀 더 효율적인 특징벡터를 추출한 다음 감정을 인식하고, 인식된 결과를 얼굴 표현 시스템에 적용시켜 감정을 표현한다.

  • PDF

Manifold Learning을 통한 표정과 Action Unit 간의 상관성에 관한 연구 (A Study in Relationship between Facial Expression and Action Unit)

  • 김선빈;김현철
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2018년도 추계학술발표대회
    • /
    • pp.763-766
    • /
    • 2018
  • 표정은 사람들 사이에서 감정을 표현하는 강력한 비언어적 수단이다. 표정 인식은 기계학습에서 아주 중요한 분야 중에 하나이다. 표정 인식에 사용되는 기계학습 모델들은 사람 수준의 성능을 보여준다. 하지만 좋은 성능에도 불구하고, 기계학습 모델들은 표정 인식 결과에 대한 근거나 설명을 제공해주지 못한다. 이 연구는 표정 인식의 근거로서 Facial Action Coding Unit(AUs)을 사용하기 위해서 CK+ Dataset을 사용하여 표정 인식을 학습한 Convolutional Neural Network(CNN) 모델이 추출한 특징들을 t-distributed stochastic neighbor embedding(t-SNE)을 사용하여 시각화한 뒤, 인식된 표정과 AUs 사이의 분포의 연관성을 확인하는 연구이다.

얼굴표정과 음성을 이용한 감정인식 (An Emotion Recognition Method using Facial Expression and Speech Signal)

  • 고현주;이대종;전명근
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권6호
    • /
    • pp.799-807
    • /
    • 2004
  • 본 논문에서는 사람의 얼굴표정과 음성 속에 담긴 6개의 기본감정(기쁨, 슬픔, 화남, 놀람, 혐오, 공포)에 대한 특징을 추출하고 인식하고자 한다. 이를 위해 얼굴표정을 이용한 감정인식에서는 이산 웨이블렛 기반 다해상도 분석을 이용하여 선형판별분석기법으로 특징을 추출하고 최소 거리 분류 방법을 이용하여 감정을 인식한다. 음성에서의 감정인식은 웨이블렛 필터뱅크를 이용하여 독립적인 감정을 확인한 후 다중의사 결정 기법에 외해 감정인식을 한다. 최종적으로 얼굴 표정에서의 감정인식과 음성에서의 감정인식을 융합하는 단계로 퍼지 소속함수를 이용하며, 각 감정에 대하여 소속도로 표현된 매칭 감은 얼굴에서의 감정과 음성에서의 감정별로 더하고 그중 가장 큰 값을 인식 대상의 감정으로 선정한다.

표정 HMM과 사후 확률을 이용한 얼굴 표정 인식 프레임워크 (A Recognition Framework for Facial Expression by Expression HMM and Posterior Probability)

  • 김진옥
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제11권3호
    • /
    • pp.284-291
    • /
    • 2005
  • 본 연구에서는 학습한 표정 패턴을 기반으로 비디오에서 사람의 얼굴을 검출하고 표정을 분석하여 분류하는 프레임워크를 제안한다. 제안 프레임워크는 얼굴 표정을 인식하는데 있어 공간적 정보 외시간에 따라 변하는 표정의 패턴을 표현하기 위해 표정 특성을 공간적으로 분석한 PCA와 시공간적으로 분석한 Hidden Markov Model(HMM) 기반의 표정 HMM을 이용한다. 표정의 공간적 특징 추출은 시간적 분석 과정과 밀접하게 연관되어 있기 때문에 다양하게 변화하는 표정을 검출하여 추적하고 분류하는데 HMM의 시공간적 접근 방식을 적용하면 효과적이기 때문이다. 제안 인식 프레임워크는 현재의 시각적 관측치와 이전 시각적 결과간의 사후 확률 방법에 의해 완성된다. 결과적으로 제안 프레임워크는 대표적인 6개 표정뿐만 아니라 표정의 정도가 약한 프레임에 대해서도 정확하고 강건한 표정 인식 결과를 보인다. 제안 프레임 워크를 이용하면 표정 인식, HCI, 키프레임 추출과 같은 응용 분야 구현에 효과적이다

혼합형 특징점 추출을 이용한 얼굴 표정의 감성 인식 (Emotion Recognition of Facial Expression using the Hybrid Feature Extraction)

  • 변광섭;박창현;심귀보
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.132-134
    • /
    • 2004
  • Emotion recognition between human and human is done compositely using various features that are face, voice, gesture and etc. Among them, it is a face that emotion expression is revealed the most definitely. Human expresses and recognizes a emotion using complex and various features of the face. This paper proposes hybrid feature extraction for emotions recognition from facial expression. Hybrid feature extraction imitates emotion recognition system of human by combination of geometrical feature based extraction and color distributed histogram. That is, it can robustly perform emotion recognition by extracting many features of facial expression.

  • PDF

동적얼굴영상으로부터 감정인식에 관한 연구 (A Study on Emotion Recognition from a Active Face Images)

  • 이명원;곽근창
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2011년도 추계학술발표대회
    • /
    • pp.295-297
    • /
    • 2011
  • 본 논문에서는 동적얼굴영상으로부터 감정인식을 위해 벡터 표현 보다는 직접적인 텐서 표현으로 특징들을 추출하는 텐서 기반 다선형 주성분분석(MPCA: Multilinear Principal Component Analysis) 기법을 사용한다. 사람 6가지의 얼굴 표정을 사용하는데 한 사람의 각 표정마다 5프레임으로 묶어서 텐서 형태로 취하여 특징을 추출하고 인식한다. 시스템의 성능 평가는 CNU 얼굴 감정인식 데이터베이스를 이용하여 특징점 개수와 성능척도에 따른 실험을 수행하여 제시된 방법의 유용성에 관해 살펴본다.