• Title/Summary/Keyword: 표적탐지

Search Result 467, Processing Time 0.023 seconds

능동 소나 체계에서의 표적 탐지 거리 예측 알고리즘과 응용

  • 박재은
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1993.06a
    • /
    • pp.186-189
    • /
    • 1993
  • 능동 소나 체계에서 표적의 탐지거리 예측을 위하여 소나방정식이 이용되는데, 이는 음원 준위, 전달 손실, 표적 강도, 복반사 준위, 소음 준위, 방향성 이득, Detection threshold, Signal excess, 탐지 확률과 탐지거리의 요소로 구성된다. 본 연구에서는 능동 소나 체계에서 소나 깊이와 표적 깊이의 함수인 탐지거리를 계산하기 위한 알고리즘에 대해 살펴보았다. 소나의 각 요소와 환경이 주어졌을 때 SAFARI 모델을 이용하여 각 수신기의 깊이와 거리에서의 전달손실을 계산하였으며, 구하여진 전달 손실과 배경 소음 준위를 이용하여 Signal excess를 계산하였다. ROC(Receiver-operating-characteristic) 곡선을 이용하여 Signal excess를 탐지 확률로 계산한 후 두 항을 곱하여 각 깊이별 거리로 적분함으로서 탐지거리를 구하였다. 주파수 30Hz의 전방향 음원을 사용하여 여름의 일반적 음속 분포에서 계산한 결과 100m 음원 보다 300m 음원에서 상대적으로 큰 탐지거리를 얻었으며 각 음원 깊이별 평균 탐지거리는 100m 이하의 표면을 제외한 500m 까지는 거의 일정함을 알 수 있었다.

  • PDF

Development of Torpedo Target Detection Section Interface Simulation System based on DEVS Integrated Development Environment (DEVS 통합개발환경 기반 모의 어뢰 표적탐지부 연동장비 개발)

  • Lee, Min Kyu;Hwang, Kun Chul;Lee, Dong Hoon;Nah, Young In;Kim, Woo Shik
    • Journal of the Korea Society for Simulation
    • /
    • v.24 no.1
    • /
    • pp.25-34
    • /
    • 2015
  • It is necessary for us to undergo trial and error for eliciting the rational requirement of the acquisition of weapon systems, but the M&S is general approach due to costs and risk of the development. In addition to the acquisition of weapon systems, M&S is extensively employed in the analysis and the training of developed weapon systems. The ADD (Agency for Defense Development) has developed DEVS integrated development environment (QUEST) that provides M&S general ground technique composed of simulation model implementation services, simulation result analysis services, and simulation interface services. This paper describes the interface architecture and the implementation of torpedo target detection section interface simulation system using QUEST. The torpedo target detection section interface simulation system is composed of torpedo target detection section which calculates a result of target detection and the QUEST scenario generator which provides simulation scenario for performance test of the torpedo target detection section. The interface architecture of torpedo target detection section interface simulation system is designed to verify the interface and performance of the torpedo target detection section by linking with the QUEST scenario generator.

Detection of Signal Frequency Lines for Acoustic Target using Autoassociative Momory Neural Network (자동 연상 기억장치 신경망을 이용한 음향 표적의 신호 주파수선 탐지)

  • Lee, Sung-Eun;Hwang, Soo-Bok;Nam, Ki-Gon;Kim, Jae-Chang
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.5
    • /
    • pp.118-124
    • /
    • 1996
  • Signal frequency lines generated from the acoustic targets are of particular importance for target detection and classification in passive sonar systems. The underwater noise consists of a mixture of ambient noise and radiated noise of targets. Detction of exact signal frequency lines depends on signal detection threshold and variation of ambient noise. In this paper, a detection method of signal frequency lines for acoustic targets using autoassociative memory (ASM) neural network, which is not sensitive to variation of signal detection threshold and ambient noise, is proposed. It is confirmed by simulation and application of real acoustic targets that the proposed method shows good performance for detection of signal frequency lines.

  • PDF

Target Acquisition and Tracking of Tracking Radar (추적레이다의 표적 탐지 및 추적 기술 동향)

  • Shin, Han-Seop;Choi, Jee-Hwan;Kim, Dae-Oh;Kim, Tae-Hyung
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.7 no.1
    • /
    • pp.113-118
    • /
    • 2009
  • In this paper, we described the model of noise, target for tracking radar and range tracking, angle tracking, and Doppler frequency tracking for target acquisition and tracking. Target signal as well as the noise signal is modeled as random process varying with elapsed time. This paper addresses three areas of radar target tracking: range tracking, angle tracking, and Doppler frequency tracking. In general, range tracking is prerequisite to and inherent in both angle and Doppler frequency tracking systems. First, we introduced the several range tracking and described techniques for achieving range tracking. Second, we described the radar angle tracking techniques including conical scan, sequential lobing, and monopulse. Finally, we presented concepts and techniques for Doppler frequency tracking for several radar types.

  • PDF

Effects of Spatial Resolution on PSO Target Detection Results of Airplane and Ship (항공기와 선박의 PSO 표적탐지 결과에 공간해상도가 미치는 영향)

  • Yeom, Jun Ho;Kim, Byeong Hee;Kim, Yong Il
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.22 no.1
    • /
    • pp.23-29
    • /
    • 2014
  • The emergence of high resolution satellite images and the evolution of spatial resolution facilitate various studies using high resolution satellite images. Above all, target detection algorithms are effective for monitoring of traffic flow and military surveillance and reconnaissance because vehicles, airplanes, and ships on broad area could be detected easily using high resolution satellite images. Recently, many satellites are launched from global countries and the diversity of satellite images are also increased. On the contrary, studies on comparison about the spatial resolution or target detection, especially, are insufficient in domestic and foreign countries. Therefore, in this study, effects of spatial resolution on target detection are analyzed using the PSO target detection algorithm. The resampling techniques such as nearest neighbor, bilinear, and cubic convolution are adopted to resize the original image into 0.5m, 1m, 2m, 4m spatial resolutions. Then, accuracy of target detection is assessed according to not only spatial resolution but also resampling method. As a result of the study, the resolution of 0.5m and nearest neighbor among the resampling methods have the best accuracy. Additionally, it is necessary to satisfy the criteria of 2m and 4m resolution for the detection of airplane and ship, respectively. The detection of airplane need more high spatial resolution than ship because of their complexity of shape. This research suggests the appropriate spatial resolution for the plane and ship target detection and contributes to the criteria of satellite sensor design.

An Analysis of the Operational Effectiveness of Target Acquisition Radar (포병 표적탐지 레이더 운용의 계량적 효과 분석)

  • Kang, Shin-Sung;Lee, Jae-Yeong
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.2
    • /
    • pp.63-72
    • /
    • 2010
  • In the future warfare, the importance of the counter-fire operation is increasing. The counter-fire operation is divided into offensive counter-fire operation and defensive counter-fire operation. Reviewing the researches done so far, the detection asset of offensive counter-fire operation called UAV(Unmanned Aerial Vehicle) and its operational effectiveness analysis is continually progressing. However, the analysis of the detection asset of defensive counterfire called Target Acquisition Radar(TAR) and its quantitative operational effectiveness are not studied yet. Therefore, in this paper, we studied operational effectiveness of TAR using C2 Theory & MANA Simulation model, and showed clear quantitative analysis results by comparing both cases of using TAR and not using TAR.

Improving compensation method of target detection area difference between Electro-optical tracking system and radar (전자광학추적장비와 레이더 사이의 표적탐지영역의 차이보상방법 개선)

  • Yoo, Hyeong-Gon;Kwon, Kang-Hoon;Kim, Young-Kil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.12
    • /
    • pp.3023-3029
    • /
    • 2013
  • This is an example we generally have a variety of equipment that can detect and track the targets and track them quickly and accurately through the information exchange among each piece of equipment. These equipment have similar detection areas (FOV), but some are different due to the limit of the resolution of the equipment. In this paper, we studied the method of reducing detection time and tracking the targets automatically.

A Study on Clutter Rejection using PCA and Stochastic features of Edge Image (주성분 분석법 및 외곽선 영상의 통계적 특성을 이용한 클러터 제거기법 연구)

  • Kang, Suk-Jong;Kim, Do-Jong;Bae, Hyeon-Deok
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.47 no.6
    • /
    • pp.12-18
    • /
    • 2010
  • Automatic Target Detection (ATD) systems that use forward-looking infrared (FLIR) consists of three stages. preprocessing, detection, and clutter rejection. All potential targets are extracted in preprocessing and detection stages. But, this results in a high false alarm rates. To reduce false alarm rates of ATD system, true targets are extracted in the clutter rejection stage. This paper focuses on clutter rejection stage. This paper presents a new clutter rejection technique using PCA features and stochastic features of clutters and targets. PCA features are obtained from Euclidian distances using which potential targets are projected to reduced eigenspace selected from target eigenvectors. CV is used for calculating stochastic features of edges in targets and clutters images. To distinguish between target and clutter, LDA (Linear Discriminant Analysis) is applied. The experimental results show that the proposed algorithm accurately classify clutters with a low false rate compared to PCA method or CV method

Phase Error Decrease Method for Target Direction Detection Improvement (표적 방향 탐지 향상을 위한 위상 오차 감소 방법)

  • Lee, Min-Soo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.1
    • /
    • pp.7-13
    • /
    • 2021
  • This paper proposes a method to minimize the target's direction detection error using RADAR. The radar system cannot accurately detect the target direction due to the phase error of he received signal. The proposed method of this study obtains a phase by applying an root mean square to each antenna incident signal, and reduces the phase error by using an optimal signal to noise ratio. In the simulation result, the probability of detecting the target direction is the best when the antenna spacing is half wavelength. The conventional method of direction detection probability 10-1.7 and the proposed method is 10-3.3. The target detection direction of the existing method represents [-8°,8°] with an error of 2 degrees. The target detection direction of the proposed method is shown in [-10°,10°], and all target directions are accurately detected. In the future, There is need for a method to reduce the phase error even though the resolution decrease.

Sonar detection performance analysis considering bistatic target strength (양상태 표적강도를 고려한 소나 탐지성능 분석)

  • Wonjun Yang;Dongwook Kim;Dae Hyeok Lee;Jee Woong Choi;Su-Uk Son
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.3
    • /
    • pp.305-313
    • /
    • 2024
  • For effective bi-static sonar operation, detection performance analysis must be performed reflecting the characteristics of sound propagation due to the ocean environment and target information. However, previous studies analyzing bistatic sonar detection performance have either not considered the ocean environment and target characteristics or have been conducted using simplified approaches. Therefore, in this study, we compared and analyzed the bistatic detection performance in Yellow sea and Ulleung basin both with and without considering target characteristics. A numerical analysis model was used to derive an accurate bistatic target strength for the submarine-shaped target, and signal excess was calculated by reflecting the simulated target strength. As a result, significant changes in detection performance were observed depending on the source and receiver locations as well as the target strength.