본 논문은 인공신경망과 귀납적 학습방법 등의 인공지능 방법과 선물가격결정에 대한 기존 재무이론을 사용하여 일상어취로 표현되는 파생상품 가격예측 모형을 개발하는데 있다. 모형의 개발은 1단계로 인공신경망이나 기존의 선물가격결정이론(평균보 유비용모형이나 일반균형모형)을 이용하여 선물 가격을 예측한 후, 서로 비교 분석하여 인공신경망 모형의 우수성을 확인하였다. 귀납적 학습방법중 CART 알고리듬을 사용하여 If-Then 규칙을 생성하였다. 특히 실용적 측면에서 선물가격의 일상어휘화를 통한 모형개발을 여러 가지 방법으로 시도하였다. 이러한 선물가격 예측모형의 유용성은 일단 If-Then 규칙으로 표현되어 전문가의 판단에 확실한 이론적인 근거를 제시할 수 있는 장점이 있으며, 특히 의사결정지원시스템으로 활용화 될 경우 매우 유용한 근거자료로 활용될 수 있다. 이러한 선물가격 예측모형의 정확성은 분석표본과 검증표본으로 나누어 검증표본에서 세가지 기본모형(평균보유 비용모형, 일반균형모형, 인공신경망 모형)과 각 모형의 귀납적 학습방법 모형의 다른 3가지 어휘표현방법 3가지를 모형별로 비교 분석하였다. 분석결과 인공신경망모형은 상당한 예측력을 갖고 있는 것으로 판명되었으며, 특히 CART를 기반으로 한 일상어취 기반의 선물가격예측 모형은 예측력이 높은 것으로 나타났다.
기능 유전체학에서 클러스터링 기법은 고차원의 마이크로 어레이 데이터 분석을 위한 주된 도구 중의 하나이다. 본 논문에서는 정보병목(information bottleneck)기법 기반의 이중 클러스터링에 의한, 유전자 발현 데이터의 계층적 병합방식 클러스터링 기법을 제안한다. 정보병목기법은, 두 랜덤변수의 결합확률분포가 주어진 경우 두 변수의 상호 정보량을 최대한 보존하면서 한 변수를 압축하는 기법이며, 두 변수를 차례로 압축하는 것이 이중 클러스터링이다. 실제 마이크로 어레이 데이터인 NC160 데이터(암세포 내 유전자 발현 데이터)에 대한 실험에서, 먼저 유전자를 그 발현패턴에 따라 클러스터링 한 후 이를 이용하여 표본들을 클러스터링하고 그 성능을 다각도로 분석하였다. 상호 정보량과 유전자 및 표본 클러스터 수와 엔트로피 척도에 의한 성능을 검토해 본 결과, 표본이 추출 조직에 따라 구분 가능할 것이라는 가정을 검증할 수 있었으며, 적절한 클러스터의 수를 결정할 수 있는 임계점의 기준을 설정할 수 있었다.
통계청에서 실시하는 사업체관련 통계조사들 중 운수업통계조사는 국내의 모든 운수업체를 대상으로 종사자수, 급여, 수입, 비용 및 유형고정자산 등 운수업부문의 경영활동실태와 구조를 파악하기 위해 매년 실시하는 조사이다. 이 조사에서 얻어진 결과들은 국가정책수립과 평가를 위한 기초자료로서 뿐만 아니라 기업경영계획수립과 학술연구 등에 널리 활용되어지고 있다. 본 논문에서는 올해 실시한 운수업통계조사의 표본설계에 대해 설명하고, 아울러 통계청에서 실시하고 있는 표본사업체들의 관리에 대해 알아보고자 한다.
확률도시위치는 주로 도시적 해석을 통한 연최대홍수량 또는 연최대강우량의 초과확률의 추정치 산정에 사용되며 빈도해석을 통해 선정된 적정 확률분포형과 표본자료의 개략적인 적합도를 도시적으로 파악할 수 있도록 해주기 때문에 오래 전부터 널리 이용되어 왔다. 본 연구에서는 Gumbel 분포에 적합한 도시위치공식을 새롭게 추정하기 위해 Gumbel 분포의 order statistic과 확률가중모멘트를 이용하여 다양한 표본크기에 대한 도시위치공식의 기본식을 유도하였고, 최적화 기법 중 하나인 유전자 알고리즘을 이용하여 유도된 도시위치공식의 매개변수를 추정하였다. 또한 본 연구에서 추정된 도시위치공식과 기존에 널리 사용되고 있는 도시 치공식의 정확도를 비교하기 위해 reduced variate 간의 오차를 계산하여 비교 검토하였다. 그 결과, 금회 추정된 도시위치공식은 높은 순위에서는 기존의 도시위치공식에 비해 더 정확도가 높은 것으로 나타났고, 표본크기에 대한 순위를 모두 고려할 경우에는 기존의 도시위치공식에 비해 정확도가 높은 것으로 나타나 Gumbel 분포에 대해서 높은 정확도를 보이는 것으로 나타났다.
한국노동패널조사(Korea Labor and Income Panel Study)는 비농촌지역에 거주하는 한국의 가구와 가구원을 대표하는 패널표본구성원(5,000가구에 거주하는 가구원)을 대상으로 1년에 1회 경제활동 및 노동시장 이동, 소득 활동 및 소비, 교육 및 직업훈련, 사회생활 등에 관하여 추적 조사하는 종단면 조사(longitudinal survey)이다. 매년 반복적인 조사를 통해 표본가구구성원들에 대한 다양한 내용의 정보를 수집하는 가운데 조사년수가 늘어가면서 표본가구원 개인들의 생애과정(Life Course)에 걸친 단계별 변화와 이동의 이력, 특히 학교교육력(Schooling History), 취업력(Work History) 혹은 노동시장이동(Labor Market Transitions) 과정이 구축될 수 있을 것이다. 조사구의 추출방법은 계통추출방법을 사용하였으며, 제주도를 제외한 전국의 시부만을 대상으로 1,000개의 조사구를 선정하고, 각 조사구내에서는 97년 고 3965;의 조사대상가구 중에서 5가구를 임의 선정(random sampling)하였다.다.
표식율법을 이용하여 어족으 자원량을 추정하는 방법에 대하여는 많은 연구보고가 있다(Ricker, 1948; Schaefer, 1951; Delury, 1958; Nose, 1961). 그런데 표식율법으로 자원미수를 추정할 경우 다음과 같은 몇가지 조건이 수반되어야 편의성이 없는 추정치를 얻을 수 있다. 즉 표식의 탈락이 없으며, 표식어는 위약성과 자연사망에 있어서 비표식어와 차이가 없으며, 가입과 일출이 없는 모집단에서 임의표본이 추출되어야 하며, 표본중의 표식어의 판명이 완전하여야 한다. 본고에서는 연어의 산란친어미수를 표식율볍으로 추정함에 있어서 당면하는 문제점 특히 일출이 있을 경우와 천적으로 인한 표식어의 오판이 있을 경우에 대하여 검토한 결과를 보고한다.
밀도증가식(密度增加式) 표본추출법(標本抽出法)은 입력지형(入力地形)의 변이성(變異性)에 잘 부합되고 가장 효율적(効率的)인 표본추출법중(標本抽出法中)의 하나이다. 이들 효율성(効率性)들은 몇 가지의 추출조건(抽出條件)을 부과하여 잉여점(剩餘點)들을 제외(除外)시킴으로서 그 효율성(効率性)을 크게 향상(向上)시킬 수 있다. 연구(硏究)에서는 추출조건(抽出條件)으로서 4가지 즉(即), 표준형(標準形), 도약형(跳躍形), 유보형(留保形), 혼합형(混合形)을 적용하여 수치시험을 실시(實施)하였으며 그 결과 그 중에서 유보형조건(留保形條件)이 가장 주목할 만한 추출조건(抽出條件)임을 알 수 있었다.
연구에서는 해외기업 인수의 생존전략가설(生存戰略假說)(Shapiro,1989)을 $1986{\sim}1991$년까지 해외기업을 인수한 30개 국내 인수기업의 주식수익률 자료를 이용하여 검증하였다. 해외기업 인수에 관한 정보의 공시가, 전체표본(全體標本)의 경우, 국내 인수기업의 주식가격에 중립적이거나 혹은 부정적인 효과를 가져다 주었다. 또한, 국내 인수기업중에서 외국기업을 인수해야 할 긴박성의 정도에 따라 전체표본을 성장기업(成長企業)과 한계기업(限界企業)으로 분리하여 각 표본을 대상으로 인수에 관한 정보의 공시가 주가(株價)에 미치는 효과를 분석하였다. 소표본의 분석 결과에 따르면, 성장기업의 경우는 초과수익률이 통계적으로 0에 가까운 중립적인 반응을 보였으며, 한계기업의 경우는 통계적으로 유의한 마이너스 초과수익률을 나타내어 생존전략 가설을 확인시켜 주었다. 따라서, 국내기업에 의한 해외기업 인수는 국제화를 통해 초과수익을 추구하기 위한 전략이라기 보다는, 국내 및 국제시장에서 살아남기 위한 생존전략의 한 방안으로 추진된다고 결론지을 수 있다.
층화표본추출(stratified sampling)은 모집단을 구성하는 층에 대한 정보를 표본설계에 반영함으로써 추정량의 분산을 낮추기 위한 표본추출 방법으로, 표본배분 방안의 선택이 층화표본의 효과를 결정하는데 매우 중요한 요소이다. 전통적인 표본배분 방법으로는 비례배분법(proportional allocation)과 네이만배분법(Neyman alloction)이 주로 사용되는데, 이는 층별 추정량의 분산에 영향을 미치는 요인들을 표본 배분에 반영함으로써 전체 추정량의 분산을 최적화하기 위한 것이다. 이론적으로는 층크기(size of strata)만을 반영하는 비례배분법보다 층별 표준편차(standard deviation)를 함께 고려하는 네이만배분법이 추정량의 분산을 낮추는데 더 효과적임이 알려져 있다. 그러나 층별 표준편차에 대한 사전 정보가 모집단을 잘 반영하지 못하면 네이만배분법의 효과를 기대할 수 없으며, 특히 복수의 관심변수를 조사하는 다목적조사(multi-purpose survey)에서는 각 관심변수들의 층별 표준편차가 서로 다른 양상을 나타내기 때문에 네이만배분법이 적합하지 않다는 주장이 제기되기도 한다. 한편 표본조사에서는 조사단계에서 발생하는 무응답으로 인한 추정량의 편향을 제거하기 위해 응답률 보정 방법이 사용되는데, 이 또한 추정량의 분산에 영향을 미치는 주요한 요인 중에 하나이다. 그러나 전통적인 표본배분 방법은 응답률(response rate)을 감안하지 않기 때문에 층별 응답율에 차이가 크게 나타날 경우 층화표본에 의한 효과가 저하될 수 있다. 이에 본 연구는 층화표본추출에서 층간 응답률의 차이가 추정량의 분산에 미치는 영향을 살펴보고, 층별 응답률 정보를 표본설계에 반영하는 새로운 표본배분 방법을 제안하였다. 모의실험을 통해 확인한 결과 네이만배분법은 당초 표본배분 시에 적용한 층별 표준편차의 구조가 각 층의 응답률 보정과정에서 증가하는 분산을 반영하지 못하기 때문에 층간 응답률의 편차가 커질수록 효율이 저하되는 것으로 나타났다. 반면 층 크기와 층별 응답률을 함께 반영한 배분방법은 비례배분법에 비해 효율이 개선되며, 층간 응답률의 편차가 클수록 그 효과는 커진다. 특히 층별 응답률의 변동계수(coefficient of variance)가 층별 표준편차의 변동계수를 상회하는 경우는 네이만배분법 보다도 효율적인 추정량을 제공함을 확인하였다. 아울러 응답률을 반영한 배분방법은 기존 배분방법에 비해 각 층별 추정량을 보다 안정적으로 추정할 수 있기 때문에 층별 추정을 목적으로 하는 층화표본조사에서는 여타 추정방법보다 더 효과적이다. 층별 응답률에 대한 정보는 관심변수가 다르더라도 추출틀이 유사한 기존 조사의 결과를 활용할 수 있다는 점에서 표준편차에 비해 비교적 정보 수집이 용이한 장점이 있고, 다목적조사에서도 관심변수의 척도(scale)나 개수와 관계없이 적용 가능하기 때문에 활용도가 높을 것으로 생각된다.
무선 센서 네트워크에서, 각 센서 노드들로부터 수집된 정보를 효율적으로 활용하기 위해 센서 노드의 정확한 위치 정보는 필수적이다. 센서 노드의 위치를 추정하는 다양한 기법들 중, 일반적으로 많이 사용되는 수신신호세기(RSS)기법은 추가적인 하드웨어 자원 없이 쉽게 구현될 수 있으나 채널 환경에 따라 다양한 표본 데이터들이 수집 될 수 있고, 특히 이상점(outlier)이 포함 될 수 있다. 이러한 이상점들은, 수집된 표본들로부터 통계적 분석(statistical analysis)에 상당한 요인을 미치며 위치 추정 오차를 발생시키는 주요한 원인이 된다. 따라서 본 논문에서는, 이상점이 포함 된 표본들로부터 정확한 위치 추정을 위해 Robust Statistics를 적용한 가우시안 필터 알고리즘을 제안한다. 제안한 알고리즘은 이상점이 포함된 표본들로부터 이상점을 제거하고, 낮은 확률값의 표본들을 배제함으로써 위치 추정의 정확도를 향상시킨다. 시뮬레이션 결과로부터, 이상점이 포함 된 표본들로부터 비 가우시안적 환경에서 제안된 방법의 위치 추정의 정확성 향상과 강인성을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.