• Title/Summary/Keyword: 표면하 분해

Search Result 505, Processing Time 0.03 seconds

Deformation History of Precambrian Metamorphic Rocks in the Yeongyang-Uljin Area, Korea (영양-울진 지역 선캠브리아기 변성암류의 변형작용사)

  • Kang Ji-Hoon;Kim Nam Hoon;Park Kye-Hun;Song Yong Sun;Ock Soo-Seok
    • The Journal of the Petrological Society of Korea
    • /
    • v.13 no.4
    • /
    • pp.179-190
    • /
    • 2004
  • Precambrian metamorphic rocks of Yeongyang-Uljin area, which is located in the eastern part of Sobaegsan Massif, Korea, are composed of Pyeonghae, Giseong, Wonnam Formations and Hada leuco granite gneisses. These show a zonal distribution of WNW-ESE trend, and are intruded by Mesozoic igneous rocks and are unconformably overlain by Mesozoic sedimentary rocks. This study clarifies the deformation history of Precambrian metamorphic rocks after the formation of gneissosity or schistosity on the basis of the geometric and kinematic features and the forming sequence of multi-deformed rock structures, and suggests that the geological structures of this area experienced at least four phases of deformation i.e. ductile shear deformation, one deformation before that, at least two deformations after that. (1) The first phase of deformation formed regional foliations and WNW-trending isoclinal folds with subhorizontal axes and steep axial planes dipping to the north. (2) The second phase of deformation occurred by dextral ductile shear deformation of top-to-the east movement, forming stretching lineations of E-W trend, S-C mylonitic structure foliations, and Z-shaped asymmetric folds. (3) The third phase deformation formed I-W trending open- or kink-type recumbent folds with subhorizontal axes and gently dipping axial planes. (4) The fourth phase deformation took place under compression of NNW-SSE direction, forming ENE-WSW trending symmetric open upright folds and asymmetric conjugate kink folds with subhorizontal axes, and conjugate faults thrusting to the both NNW and SSE with drag folds related to it. These four phases of deformation are closely connected with the orientation of regional foliation in the Yeongyang-Uljin area. 1st deformation produced regional foliation striking WNW and steeply dipping to the north, 2nd deformation locally change the strike of regional foliation into N-S direction, and 3rd and 4th deformations locally change dip-angle and dip-direction of regional foliation.

A Study on the Temperature fronts observed in the South-West Sea of Korea and the Northern Area of the East China Sea (한국 남$\cdot$서해 및 동중국해 북부해역에 출현하는 수온전선)

  • YANG Young Jin;KIM Sang Hyun;RHO Hong Kil
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.31 no.5
    • /
    • pp.695-706
    • /
    • 1998
  • SST (Sea Surface. Temperature) fronts which were found in the South-West Sea of Korea and the northern area of the East China Sea were examined in order to clarify their positions, shapes, seasonal changes and the formation mechanism, For this study used SST data rearranged from the SST IR image during 1991 to 1996 and oceanographical data obtained by National Fisheries Research and Development Institute. Temperature front in the Cheju Strait was analyzed by the data obtained from a fisheries guidance ship of Cheju Provincial Government, The coastal frontal zone in the South-West Sea of Korea and the offshore frontal zone in the northern area of the East China Sea can be divided into several types (Type of Winter, Summer, Spring, Autumn and late Autumn), Short term variations of SST fronts have a tendency not to move to any Bleat extent for several days. The location of the frontal zone in the southwestern sea of Cheju Island changes on a much large scale than that of the one in the southern coast of Korea, The frontal Tone, formed every year in the southern sea of Korea approaches closer to the coastal area in winter, and moves closer to the south in spring and autumn. The frontal zone of the southwestern sea of Cheju Island moves in a westerly direction from the east, and reaches its most westerly point in the winter and its most easterly point in the summer related to the seasonal change of the Tsushima Current. Additionally, the frontal zone of the southwestern sea of Korea becomes extremely weak in March, April and November. SST fronts are formed every year around the line connecting Cheju Island to Yeoseo Island or to Chungsan Island in the Cheju Strait. A Ring-shaped tidal mixing front appears along the coastal area of Cheju Island throughout the year except during the months from November to January. Especially, in May and October fronts are formed between the coastal waters of Cheju Island and the Tsushima currents connecting the frontal zone of the coastal region in the southern sea of Korea with that of the southwestern sea of Cheju Island.

  • PDF

Quality Characteristics of Adzuki Beans Sediment According to Variety (품종에 따른 팥 앙금의 품질 특성)

  • Song, Seuk-Bo;Seo, Hye-In;Ko, Jee-Yeon;Lee, Jae-Saeng;Kang, Jong-Rae;Oh, Byeong-Geun;Seo, Myung-Chul;Yoon, Young-Nam;Kwak, Do-Yeon;Nam, Min-Hee;Woo, Koan-Sik
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.8
    • /
    • pp.1121-1127
    • /
    • 2011
  • We evaluated the quality characteristics of adzuki bean sediment according to variety. The moisture, crude protein, and crude ash contents of the various adzuki bean varieties were 8.2~11.1, 15.4~20.6 and 3.3~3.6 g/100 g, respectively. The potassium contents of Chilbo-pat (CB) and Hongeon-pat (HE) were 875.1 and 873.1 mg/100 g, respectively. The calcium contents of Jungbu-pat (JB) and Kumsil-pat (KS)were 73.6 and 73.2 mg/100 g, respectively. A high level of magnesium (131.4 mg/100 g) was found in Yeonkeum-pat (YK). The yields of adzuki bean sediment according to variety were no different either wet (188.3~204.7%) or dry (62.1~66.0%). The L-values on sediment of YK and KS were 67.0 and 68.0, respectively; however, the CB L-value was low at 54.0. A high level of a- (6.6) and b-value (12.8) was found in YK; however, the values for CB were much lower at 3.8 and 5.9, respectively. There was no difference in particle-size distribution, water binding capacity, and solubility of adzuki bean sediment according to variety. High levels of peak (3.79 RVU), trough (3.75 RVU), final (7.33 RVU), and setback viscosity (3.54 RVU) were found in JB. The sensory properties of products in food processing are important, and the variety of adzuki bean sediment should be chosen depending on desired product characteristics.

Comparison of Characteristics of Electrodeposited Lithium Electrodes Under Various Electroplating Conditions (다양한 전착조건에서 제작된 리튬 전극의 특성 연구)

  • Lim, Rana;Lee, Minhee;Kim, Jeom-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.22 no.3
    • /
    • pp.128-137
    • /
    • 2019
  • A lithium is the lightest metal on the earth. It has some attractive characteristics as a negative electrode material such as a low reduction potential (-3.04 V vs. SHE) and a high theoretical capacity ($3,860mAh\;g^{-1}$). Therefore, it has been studied as a next generation anode material for high energy lithium batteries. The thin lithium electrode is required to maximize the efficiency and energy density of the battery, but the physical roll-press method has a limitation in manufacturing thin lithium. In this study, thin lithium electrode was fabricated by electrodeposition under various conditions such as compositions of electrolytes and the current density. Deposited lithium showed strong relationship between process condition and its characteristics. The concentration of electrolyte affects to the shape of deposited lithium particle. As the concentration increases, the shape of particle changes from a sharp edged long one to a rounded lump. The former shape is favorable for suppressing dendrite formation and the elec-trode shows good stripping efficiency of 92.68% (3M LiFSI in DME, $0.4mA\;cm^{-2}$). The shape of deposited particle also affected by the applied current density. When the amount of current applied gets larger the shape changes to the sharp edged long one like the case of the low concentration electrolyte. The combination of salts and solvents, 1.5M LiFSI + 1.5M LiTFSI in DME : DOL [1 : 1 vol%] (Du-Co), was applied to the electrolyte for the lithium deposition. The lithium electrode obtained from this electrolyte composition shows the best stripping efficiency (97.26%) and the stable reversibility. This is presumed to be due to the stability of the surface film induced by the Li-F component and the DOL effect of providing film flexibility.

Development of System for Real-Time Object Recognition and Matching using Deep Learning at Simulated Lunar Surface Environment (딥러닝 기반 달 표면 모사 환경 실시간 객체 인식 및 매칭 시스템 개발)

  • Jong-Ho Na;Jun-Ho Gong;Su-Deuk Lee;Hyu-Soung Shin
    • Tunnel and Underground Space
    • /
    • v.33 no.4
    • /
    • pp.281-298
    • /
    • 2023
  • Continuous research efforts are being devoted to unmanned mobile platforms for lunar exploration. There is an ongoing demand for real-time information processing to accurately determine the positioning and mapping of areas of interest on the lunar surface. To apply deep learning processing and analysis techniques to practical rovers, research on software integration and optimization is imperative. In this study, a foundational investigation has been conducted on real-time analysis of virtual lunar base construction site images, aimed at automatically quantifying spatial information of key objects. This study involved transitioning from an existing region-based object recognition algorithm to a boundary box-based algorithm, thus enhancing object recognition accuracy and inference speed. To facilitate extensive data-based object matching training, the Batch Hard Triplet Mining technique was introduced, and research was conducted to optimize both training and inference processes. Furthermore, an improved software system for object recognition and identical object matching was integrated, accompanied by the development of visualization software for the automatic matching of identical objects within input images. Leveraging satellite simulative captured video data for training objects and moving object-captured video data for inference, training and inference for identical object matching were successfully executed. The outcomes of this research suggest the feasibility of implementing 3D spatial information based on continuous-capture video data of mobile platforms and utilizing it for positioning objects within regions of interest. As a result, these findings are expected to contribute to the integration of an automated on-site system for video-based construction monitoring and control of significant target objects within future lunar base construction sites.