• Title/Summary/Keyword: 표면파 탐사

Search Result 101, Processing Time 0.022 seconds

Multi-station joint inversion of receiver function and surface-wave phase velocity data for exploration of deep sedimentary layers (심부 퇴적층 탐사를 위한 수신함수와 표면파 위상속도를 이용한 다측점 자료의 복합 역산)

  • Kurose, Takeshi;Yamanaka, Hiroaki
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.1
    • /
    • pp.19-28
    • /
    • 2007
  • In this study, we propose a joint inversion method, using genetic algorithms, to estimate an S-wave velocity structure for deep sedimentary layers from receiver functions and surface-wave phase velocity observed at several sites. The method takes layer continuity over a target area into consideration by assuming that each layer has uniform physical properties, especially an S-wave velocity, at all the sites in a target area in order to invert datasets acquired at different sites simultaneously. Numerical experiments with synthetic data indicate that the proposed method is effective in reducing uncertainty in deep structure parameters when modelling only surface-wave dispersion data over a limited period range. We then apply the method to receiver functions derived from earthquake records at one site and two datasets of Rayleigh-wave phase velocity obtained from microtremor array surveys performed in central Tokyo, Japan. The estimated subsurface structure is in good agreement with the results of previous seismic refraction surveys and deep borehole data. We also conclude that the proposed method can provide a more accurate and reliable model than individual inversions of either receiver function data only or surface-wave dispersion data only.

Application of linear array microtremor survey for rock mass classification in urban tunnel design (도심지 터널 암반분류를 위한 선형배열 상시진동 탄성파탐사 적용)

  • Cha Young Ho;Kang Jong Suk;Jo Churl Hyun;Lee Kun
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.05a
    • /
    • pp.157-164
    • /
    • 2005
  • Urban conditions such as underground facilities and ambient noises due to cultural activity restrict the application of conventional geophysical techniques in general. We used the refraction microtremor (REMI) technique as an alternative way to get the geotechnical information, in particular shear-wave (S-wave) velocity information, at a site along an existing rail road. The REMI method uses ambient noises recorded using standard refraction equipment to derived shear-wave velocity information at a site. It does a wavefield transformation on the recorded wavefield to produce Rayleigh wave dispersion curve, which are then picked and modeled to get the shear-wave velocity structure. At this site the vibrations from the running trains provided strong noise sources that allowed REMI to be very effective. REMI was performed along the planned new underground rail tunnel. In addition, Suspension PS logging (SPS) were carried out at selected boreholes along the profile in order to draw out the quantitative relation between the shear wave velocity from the PS logging and the rock mass rating (RMR) determined from the inspection of the cores recovered from the same boreholes, These correlations were then used to relate the shear-wave velocity derived from REMI to RMR along the entire profile. The correlation between shear wave velocity and RMR was very good and so it was possible to estimate the RMR of the total zone of interest for the design of underground tunnel,

  • PDF

Evaluation of the applicability of the surface wave method to rock fill dams (사력댐에서의 표면파 기법 적용성 평가 연구)

  • Kim, Jong-Tae;Kim, Dong-Soo;Park, Heon-Joon;Bang, Eun-Seok;Kim, Sung-Woo
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.1
    • /
    • pp.9-23
    • /
    • 2010
  • In current design practice, the shear wave velocity (Vs) of the core and rock-fill zone of a dam, one of the characteristics essential for seismic response design, is seldom determined by field tests. This is because the borehole seismic method is often restricted in application, due to stabilisation activities and concern for the security of the dam structure, and surface wave methods are limited by unfavourable in-situ site conditions. Consequently, seismic response design for a dam may be performed using Vs values that are assumed, or empirically determined. To estimate Vs for the core and rock-fill zone, and to find a reliable method for measuring Vs, seismic surface wave methods have been applied on the crest and sloping surface of the existing 'M' dam. Numerical analysis was also performed to verify the applicability of the surface wave method to a rock-fill dam. Through this numerical analysis and comparison with other test results, the applicability of the surface wave method to rock-fill dams was verified.

Comparison of S-wave Yelocity Profiles Obtained by Down-hole Seismic Survey, MASW and SCPT with a Drilling Log in Unconsolidated Sediments (비고결 퇴적물에서 다운홀 탄성파 탐사, MASW, SCPT로 구한 횡과 속도 단면과 시추결과 비교 연구)

  • Kim, Hyun-Do;Kim, Jin-Hoo
    • Journal of the Korean earth science society
    • /
    • v.25 no.4
    • /
    • pp.270-276
    • /
    • 2004
  • Multi-channel Analysis of Surface Waves (MASW) and Seismic Cone Penetration Test (SCPT) have been recently developed to obtain S-wave velocity profiles which were conventionally investigated by a down-hole seismic survey. For unconsolidated sedimentary sites, we studied these three methods, and compared the results with a drilling log. All the methods showed that the changes in the S-wave velocities were consistent with the changes in the sedimentary facies. In addition, the SCPT was most sensitive to changes in sedimentary facies among the three profiles. The results of the SCPT showed that there exists a low velocity zone, which is mainly composed of clayey sand, at the depth of 8${\sim}$12m in the sediments.

Comparison of shear-wave sections from inverting refracted shear waves and surface wave dispersions (횡파단면 작성을 위한 굴절된 횡파와 표면파 자료 역산 결과 비교)

  • Lee, Chang, Min;Kim, Ki-Young
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.05a
    • /
    • pp.287-291
    • /
    • 2005
  • Two-dimensional velocity tomograms of P- and S-waves were obtained by inverting traveltimes of first arrivals. The two sections of shear-wave velocity show similar features as a whole, with smaller values on the section from surface wave dispersions. Difficulties in picking SH-wave phases due to noise and later arrivals than P waves and PS converted waves are experienced. In addition, a flat layer model based on the surface wave inversion prohibits applications of the method where sgear wave velocities vary strongly in the lateral direction.

  • PDF

Characterization of S-velocity Structure Near Izmit City of Turkey Using Ambient Noise and MASW (표면파를 이용한 터키 이즈밋 근교 부지의 S파 속도 구조 규명)

  • Cho, Chang-Soo
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.3
    • /
    • pp.230-241
    • /
    • 2008
  • Characteristics of transfer responses for arrays like triangle, hexagon and semicircle were investigated. To characterize the site near Izmit city with ambient noise measurement, dispersion curves of surface waves were derived with using array technique like F-K, High resolution F-K, MSPAC and H/V ratio was calculated. Also, MASW was surveyed to get the high frequency part of dispersion curves. The transition from fundamental mode to first high mode of surface waves for dispersion curve was observed. Dispersion curve of fundamental mode of ambient noise and first higher mode of MASW was used in inversion to get S-wave velocity structure of subsurface. None-unique problem of results of surface wave inversion was solved with comparison of result of refraction tomography performed with first arrivals of MASW data.

Integrated Analysis of Electrical Resistivity Monitoring and Geotechnical Data for Soft Ground (연약지반에서의 전기비저항 모니터링 및 지반조사 자료의 복합 해석)

  • Ji, Yoonsoo;Oh, Seokhoon
    • Journal of the Korean earth science society
    • /
    • v.36 no.1
    • /
    • pp.16-26
    • /
    • 2015
  • To investigate the applicability of physical prospecting technique in soft ground assessment, the resistivity monitoring data of 6 months are acquired. The Multichannel Analysis Surface Wave (MASW) has been additionally performed to identify the shear wave velocity and strength distribution of soft ground. Moreover, by using the Cone Penetration Test (CPT) and laboratory tests of drilling samples, a relationship with the physical prospect data is checked and the reliability of the physical prospect data is increased. Through these activities, the behavior patterns of soft soil are identified by long term monitoring, and the significant relationship between the shear wave velocity and laboratory tests has been confirmed, both of which can be useful in the surface wave exploration to evaluate the strength of soft ground. Finally, using the geostatistical method, 3-dimensional soil base distribution images are obtained about the combined physical prospecting data with heterogeneous data. Through the studies, the nature of entire area can be determined by long term resistivity monitoring for the soft ground assessment in wider area. It would be more economic and reliable if additional exploring and drilling samples can be analyzed, which can reinforce the assessment.

Application of linear-array microtremor surveys for rock mass classification in urban tunnel design (도심지 터널 암반분류를 위한 선형배열 상시진동 탄성파 탐사 적용)

  • Cha, Young-Ho;Kang, Jong-Suk;Jo, Churl-Hyun
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.1
    • /
    • pp.108-113
    • /
    • 2006
  • Urban conditions, such as existing underground facilities and ambient noise due to cultural activity, restrict the general application of conventional geophysical techniques. At a tunnelling site in an urban area along an existing railroad, we used the refraction microtremor (REMI) technique (Louie, 2001) as an alternative way to get geotechnical information. The REMI method uses ambient noise recorded by standard refraction equipment and a linear geophone array to derive a shear-wave velocity profile. In the inversion procedure, the Rayleigh wave dispersion curve is picked from a wavefield transformation, and iteratively modelled to get the S-wave velocity structure. The REMI survey was carried out along the line of the planned railway tunnel. At this site vibrations from trains and cars provided strong seismic sources that allowed REMI to be very effective. The objective of the survey was to evaluate the rock mass rating (RMR), using shear-wave velocity information from REMI. First, the relation between uniaxial compressive strength, which is a component of the RMR, and shear-wave velocity from laboratory tests was studied to learn whether shear-wave velocity and RMR are closely related. Then Suspension PS (SPS) logging was performed in selected boreholes along the profile, in order to draw out the quantitative relation between the shear-wave velocity from SPS logging and the RMR determined from inspection of core from the same boreholes. In these tests, shear-wave velocity showed fairly good correlation with RMR. A good relation between shear-wave velocity from REMI and RMR could be obtained, so it is possible to estimate the RMR of the entire profile for use in design of the underground tunnel.

Application Study of Structural Strength Estimation by Measuring Velocity of Shear Wave (전단파 속도계측에 의한 구조물 강도추정 실용화 연구)

  • Park, Eunchurn;Choi, Jun-Seong;Lee, Han-Gu;Yoon, Jong-Ku
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.162-162
    • /
    • 2011
  • 표면파 속도 측정은 근래 토목분야에서는 비파괴 지반조사기법으로 활용되고 있다. 최근에는 디지털 신호처리기술의 발달과 함께, 더욱 정확해진 자료분석 알고리즘을 통하여 표면파 탐사관련 기술이 향상되어 3차원의 공간연속적인 시험이 가능해졌다. 본 연구는 표면파의 분산 특성을 이용하여 콘크리트 구조물의 깊이별 강성평가를 하는 SASW(Spectral Analysis of Surface Waves)기법과 STFT(Short time Fourier Transform)과 HWT(Harmonic Wavelet Transform)를 이용한 주파수영역에서의 공진주파수를 통한 부재평가 기법인 IE(Impact Echo)기법을 이용하여 대상부재의 강도평가를 수행하기 위한 시제품 개발을 수행하였다. 시제품은 메인프레임과 2개의 센서로 이루어져 측정을 수행하며 측정장치와 DAQ장치 및 S/W로 구성되어 있다. 메인프레임의 진동특성영향을 제거하기 위하여 2개의 센서는 프레임과 띄움구조로 설계하였고 센싱하는 위치는 대상 재료의 밀착되어 계측할 수 있도록 설계하였다. 탄성파를 계측하여 대상 재료의 깊이별 측정된 표면파의 속도를 계측하며 개발된 시제품의 구조물별 적용성 평가를 위한 실험을 수행하였고 평균 표면파 속도를 통해 추정한 콘크리트 두께와 결함 및 강도 추정의 적용성을 평가하였다. 시제품을 이용해 시험콘크리트 표면파를 측정한 결과 SASW기법을 이용하여 깊이에 대한 위상속도 분포와 IE기법의 결과로 개발된 시제품의 합리적 적용성이 평가되었다. 그러나 재료의 강도추정에 있어서는 각각 알고리즘의 주파수분석 요소들에 의해 변동되는 경향을 보여 추후 많은 테스트를 통해 속도-강도 추정의 회귀곡선식을 S/W에 탑재시키고 다양한 방법으로 조합하는 알고리즘으로 신뢰성있는 강도추정을 위한 알고리즘을 개발하여야 한다.

  • PDF