• Title/Summary/Keyword: 표면초음파

Search Result 535, Processing Time 0.026 seconds

Surface Characteristics of Dental Casting Palladium Alloy for Replacement of Gold Alloy (금대체를 위한 치과주조용 파라듐 합금의 표면특성)

  • Park, Seon-Yeong;Hwang, In-Jo;Yu, Ji-Min;Park, Min-Gyu;Im, Sang-Gyu;Bae, Ho-Seong;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.196-196
    • /
    • 2016
  • 치과나 기공소로부터 높은 원가로 인한 재료선택에 어려움을 겪고 있어 귀금속 금합금의 물성을 가질 수 있도록 하면서 가격급등으로 인한 문제 해결하기 위한 비귀금속 합금으로 대체가 필요하기에 이에 따른 연구가 이루어져 국산 제품의 상품화를 위해 파라듐을 이용하여 적합한 새로운 합금을 개발하는 것이 필요하다. 치과용 골드합금은 미국치과의사 협회의 구정에 의하면 1형부터 4형까지 분류하고 있으며 3형에 해당하는 강도와 기계적인 특성을 갖도록 파라듐으로 대체하는 연구가 진행중이거나 시판되고 있다. 따라서 본 연구에서는 2형, 3형 및 4형을 대체가능하도록 팔라듐을 기반으로 한 새로운 합금을 설계하고 합금의 성분원 소인 Au(1~5), Pd(20~25), Ag(70~75), In(1.5) 및 Zn(2)등으로 조성을 변화시켜 측량 후 합금을 제조하기 위하여 아르곤 분위기하의 진공아크용해로를 이용하여 용해하였다. 정량된 금속을 진공아크 용해로에 장입하고 용해는 균질한 합금이 되도록 최소한 6회 이상 용융을 실시하며 합금성분의 손실이 발행하지 않도록 보정을 하였다. 합금의 미세조직 관찰을 위하여 샘플을 고속 다이아몬드 정밀 절단기(Acculom-5, STRUERS, Denmark)를 이용하여 절단한 후 2000 grit의 Sic 연마지에서 단계적으로 $0.3{\mu}m$ 알루미나 분말까지 연마한 후 초음파 세척을 하였다. 준비한 시편은 KCN과 $(NH_4)_2S_2O_8$을 1:1로 혼합한 부식액으로 에칭한 후 OM과 SEM을 이용하여 조직을 관찰하였으며 각 샘플의 성분변화는 EDS 분석을 통해 확인하고 결정구조는 XRD를 사용하여 분석하였다. 경도시험은 비커스경도시험기를 이용하여 5kg의 하중을 30초간 작동시켜 압흔을 연결된 micron으로 평균값을 측정하였다. 각 시편의 부식거동은 POTENTIOSTAT(Model PARSTAT 2273, EG&G, USA)을 이용하여 구강 내환경화 유사한 $36.5{\pm}1^{\circ}C$의 0.9% NaCl에서 실시하였다. 인가전위는 -1500mV에서 1000mV까지 1.67 mV/min의 주사속도로 인가하여 시험을 수행하였으며 분극곡선으로부터 부식전위와 부식전류밀도 및 부동태영역의 전류밀도로 금속의 용출거동을 조사하였으며 부식이 끝난 시편은 FE-SEM과 EDS를 사용하여 조사하였다. 기계적인 특성은 Pd-Ag에 3wt%의 Au를 첨가한 합금이 Pd-Ag에 1.5wt%합금을 첨가한 경우에 비하여 기계적인 특성이 증가하고 내식성이 크게 증가하였다. 이들 합금에 Cu를 11wt%를 첨가한 경우는 비커스경도가 200이상으로 높게 나타났지만 내식성이 크게 감소하였다.

  • PDF

Weathering Characteristics according to Seawater Immersion of the Magai Wareiishi Jizo (Buddhist Statue Carved on Rock Surface) in Hiroshima, Japan (일본 히로시마현 마애화령석지장(磨崖和靈石地藏)의 해수 침수에 의한 풍화특성)

  • Lee, Sun Myung;Lee, Myeong Seong;Chun, Yu Gun;Lee, Jae Man;Morii, Masayuki
    • Journal of Conservation Science
    • /
    • v.28 no.4
    • /
    • pp.329-341
    • /
    • 2012
  • Magai Wareiishi Jizo (Buddhist statue carved on rock surface) is close to shoreline and a part of rock block is periodically immersed by seawater. Rock material of the Wareiishi-jizo statue is composed mainly of medium or coarse-grained biotite granite and very durable. However, physical properties of the rock have been changed according to the complex interactions of the salt solution and surrounding environment. Exfoliation of the rock surface is a serious condition by salt crystallization. Exfoliation (14.6%) is concentrated on the upper part of the rock block with mainly boundary of seawater as the center. On the other hand, lower part of the rock block show black layers by contaminants deposition. In addition, brown discoloration and biological contaminants is overlapped. Rock surface show high discoloration rate of 50.5% (black discoloration, 29.2% > yellow discoloration, 14.1% > brown discoloration, 4.4% > green discoloration, 2.9%). Upper part of the rock block had a lot of change in the physical properties than lower part that is immersed by seawater. In particular, surface properties of the rock block was very weak state at the boundary surface of seawater permeation.

Microstructure and Microdefects of Diamond Thin Films Deposited by MPECVD (마이크로웨이브 화학증착법에 의한 다이아몬드 박막의 미세구조오 미세결함)

  • Lee, Se-Hyeon;Lee, Yu-Gi;Park, Jong-Wan
    • Korean Journal of Materials Research
    • /
    • v.6 no.8
    • /
    • pp.833-840
    • /
    • 1996
  • Diamond thin films were deposited on p-type (100) Si wafers using MPECVD. Prior to deposition, ultrasonic striking was done to improve density of nucleation sites with dimond powder of 40~$60\mu$m size. Then diamond thin films were deposited at $^900{\circ}C$, 40Torr and 1000W microwave power using ${CH}_{4}$ and ${H}_{2}$ gases. The purity, the morphology and the microstructur'e and microdefects of diamond thin films were characterized by Raman spectroscopy, SEM and TEM, repectively. In Raman spectroscopy the peaks of non-diamond phase increased as ${CH}_{4}$, concentration increased. In SEM, the morphology of diamond thin films varied from crystalline to cauliflower as ${CH}_{4}$, concentration increased. As ${CH}_{4}$ con centration increased, the density of defects increased, with most defects being {III} twin. ${MTP}_{5}$, were formed with five (II]) planes. As these (Ill) Planes were twinned, ${MTP}_{5}$, represented five-fold symmetry. ]n the interfaces, defects in diamond thin films fanned out from small regions implying nucleation sites.

  • PDF

Material Characteristics and Application Efficiency of Treatments for Usuki Stone Buddha Statues in Japan (일본 우스키 석불군의 재질특성과 보존처리제 적용 효과)

  • Lee, Myeong Seong;Lee, Jae Man;Lee, Sun Myung;Kim, Sa Dug;Morii, Masayuki
    • Korean Journal of Heritage: History & Science
    • /
    • v.44 no.3
    • /
    • pp.78-91
    • /
    • 2011
  • The Usuki Stone Buddha Statues in Japan are carved on mainly dark gray welded lapilli tuff accompanied by lenticular fiamme. This rock is composed of matrix which contains feldspar and opaque minerals with some phenocrysts of quartz and feldspar. The matrix is slight to highly welded. The statues have been weathered and weakened by salt and freezing of water. To enhance the mechanical properties of the rock, consolidants and water repellents were applied. The absorption ratio of the rock was highly decreased after the treatment of the water repellents, the consolidant OH 100, as well. Ultrasonic velocity revealed similarly higher values in the treated rock by KSE 300 and OH 100, compared to non-treated rock. KSE 300, especially, highly increased the Equotip surface hardness. All studied consolidants and water repellents were found to change the original color of the stone. SNL, specifically, resulted the significant change in color. In addition, KSE 300 were observed to improve resistance to weathering such as microcrack and fracture through freezing-thawing test after treatment.

A Study on Conservation Management Systems based on Deterioration Diagnosis of the Fossil Site: Tracksite of Dinosaurs and Pterosaurs in Sanbuk-dong, Gunsan, Korea (화석지 손상도 정밀진단 기반 보존관리체계 연구: 군산 산북동 공룡발자국과 익룡발자국 화석산지)

  • Hye Ri Yang;Gyu Hye Lee;Chan Hee Lee
    • Economic and Environmental Geology
    • /
    • v.56 no.6
    • /
    • pp.675-695
    • /
    • 2023
  • The tracksite of dinosaurs and pterosaurs in Sanbuk-dong of Gunsan is the largest early Cretaceous dinosaur footprint fossil site in Korea, and all the footprints are important evidence indicating that large ornithopod and theropod dinosaurs inhabited the Korean peninsula during the early Cretaceous. The Sanbuk-dong site was covered with waterproof sheet in an outdoor environment until the installation of a protective enclosure in 2021. As a result, various factors such as shear force, load reduction, temperature and humidity fluctuations, acid rain, salinity and microorganisms have complexly interacted in the substrate of fossils, exacerbating the damage to footprints. For 159 footprints in 12 trackways among the footprints found in the site, the damage types were classified in detail and the level of each damage was assessed. The damages were classified into 6 types through the classification of deterioration degree of individual footprints. As a result of ultrasonic physical property evaluation on the surface of the fossil site, most of these footprints are in the completely weathered (CW) stage. Furthermore, various weathering patterns were observed in the study area, and surface contaminants were analyzed along the stratigraphy. Although the patterns of freshness and contaminants varied at different points within the fossil site, the chemical compositions were similar. Based on the results, an efficient conservation management system for dinosaur footprint fossils was established, and a conservation treatment type for each footprint was proposed.

Investigation of Tensile Properties in Edge Modified Graphene Oxide(E-GO)/Epoxy Nano Composites (측면 치환 그래핀/에폭시 나노복합재료의 인장 특성 평가)

  • Donghyeon Lee;Ga In Cho;Hyung Mi Lim;Mantae Kim;Dong-Jun Kwon
    • Composites Research
    • /
    • v.37 no.3
    • /
    • pp.209-214
    • /
    • 2024
  • Graphene oxide (GO), known for its high stiffness, thermal conductivity, and electrical conductivity, is being utilized as a reinforcement in nanocomposite materials. This study evaluates the mechanical properties of epoxy nanocomposites incorporating GO and edge modified GO (E-GO), which has hydroxyl groups substituted only on its edges. GO/E-GO was uniformly dispersed in epoxy resin using ultrasonic dispersion, and mechanical properties were assessed through tensile testing. The results showed that the addition of nanoparticles increased both tensile strength and toughness. The tensile strength of the epoxy without nanoparticles was 74.4 MPa, while the highest tensile strength of 90.7 MPa was observed with 0.3 wt% E-GO. Additionally, the modulus increased from 2.55 GPa to 3.53 GPa with the addition of nanoparticles. Field emission scanning electron microscopy of the fracture surface revealed that the growth of cracks was impeded by the nanoparticles, preventing complete fracture and causing the cracks to split in multiple directions. E-GO, with surface treatment only on the edges, exhibited higher mechanical properties than GO due to its superior dispersion and surface treatment effects. These results highlight the importance of nanoparticle surface treatment in developing high-performance nanocomposite materials.

Study for the Conservation Treatment of the Stele for National Preceptor Hongbeop from the Jeongtosa Temple Site in Chungju (충주 정토사지 홍법국사탑비의 보존과학적 연구)

  • Chae, Woomin;Hwang, Hyunsung
    • Conservation Science in Museum
    • /
    • v.19
    • /
    • pp.1-18
    • /
    • 2018
  • The Stele for National Preceptor Hongbeop from the Jeongtosa Temple site in Chungju is one of the most important stone cultural heritage items for exemplifying the style of the Goryeo era. Despite its obvious value, this relic has been stored in a weathered condition at the National Museum of Korea. It had suffered various dismantling and displacements during the Japanese colonial period and had long been exposed in the open air. The stele was selected as a subject for the Stone Monuments Restoration Project launched by the National Museum of Korea in 2015. In preparation for its outdoor exhibition as part of the restoration project, this study investigated the characteristics of its materials, produced a map of its deterioration from weathering, and carried out ultrasonic analysis of the materials to provide findings useful for conservation treatment. The materials analysis revealed that the turtle-shaped pedestal of the stele was made from two-mica granite consisting of medium-grained quartz, plagioclase, alkali feldspar, biotite, and muscovite. Its body stone is crystalline marble, the rock-forming mineral in which is medium-grained calcite in a rose-pink color with dark grey spots. The dragon top of the stele is made of crystalline marble, the major component of which is medium-grained calcite of a light-grey color. The deterioration consists of 21.5% abrasion on the stone body, with its south face most damaged, and 18.6% granular disintegration, with the north face most damaged. The ultrasonic material characterization conducted for mapping the general condition of weathering shows low values on the parts-assembly area of the turtle-shaped pedestal and on the upper portion of the stone body. It is considered that there is dislocation due to partial blistering and fracturing as well as to the differences in surface treatment. Prior to the outdoor exhibition of the stele, the surface was cleaned of contaminants and was consolidated based on the scientific investigation in order to prevent weathering from the external environment.

Freezing and Thawing Properties of Concrete Using Recycled Coarse Aggregate (재생굵은골재를 사용한 콘크리트의 동결융해 특성)

  • Sung, Chan-Yong;Youn, Joon-No;Kim, Young-Ik;Im, Sang-Hyuk;Jung, Duck-Hyun
    • Korean Journal of Agricultural Science
    • /
    • v.30 no.2
    • /
    • pp.154-163
    • /
    • 2003
  • This study was performed to examine the freezing and thawing properties of the high strength concrete using recycled coarse aggregate. The recycled coarse aggregate was replaced by 0%, 25%, 50%, 75% and 100% of natural crushed aggregate. The compressive strength of the concrete used recycled coarse aggregate was shown in more than $400kgf/cm^2$ at the curing age 28 days. The weight loss ratio by freezing and thawing was shown in less than 1% at all mix type. The pulse velocity and relative dynamic modulus were decreased with increasing the freezing and thawing cycles. Also, durability factor for the freezing and thawing were decreased with increasing the content of recycled coarse aggregate. But, recycled concrete replaced with recycled coarse aggregate 100% was shown in more than 60 by durability factor in freezing and thawing of 300cycles Accordingly, these recycled coarse aggregate can be used for high strength concrete.

  • PDF

Evaluation of Physical Property and Material Characteristics for Stained Glass in the Yakhyeon Catholic Church, Korea (약현성당 스테인드글라스의 재료학적 특성과 물성평가)

  • Cho, Ji Hyun;Lee, Chan Hee;Kang, Myeong Kyu
    • Journal of Conservation Science
    • /
    • v.32 no.3
    • /
    • pp.425-436
    • /
    • 2016
  • The Yakhyeon catholic church (Historic Site No. 252 in Korea) that was constructed in 1892 has been the first western brick structure to ever have existed and one of the most important historical materials in the Korean modern architecture. After a fire had broken out at the catholic church in 1998, the stained glass on the back wall, the slab glass (dalle de verre) introduced by Lee Nam Guy in 1974, was repaired in 1999 because of singe scorch and water leakage. An analysis of the coloration elements showed that yellow, red and green included Zn, K and Cd, respectively. The glass of red contained Se, dark green contained Mn and Cr, and blue contained Pb and S. According to material analysis, the masonry joint was identified dolomite ($CaMg(CO_3)_2$) and calcite ($CaCO_3$), which was observed plate, columnar, rhombic and square of crystalline particles. Meanwhile, ultrasonic velocity in the stained glass recorded low speed in the middle and lower right of the window (an average of 4,130 m/s). And the joint was measured the lowest physical properties of the top left and middle of the window (an average of 2,053 m/s). This study have showed that extensive physical damage was founded to the left and middle rather than the right side. In this respect, more research in needed to conserve the correlation between color and physical properties.

A Study on the Possibility of Using of Spent RHDS Catalyst as a SCR Catalyst wash-coated on the metal corrugated substrate (폐 RHDS 촉매재생 후 메탈 코로게이트 지지체상에서 워시코팅에 의한 NOx 저감 SCR 촉매에 관한 연구)

  • Na, Woo-jin;Cha, Eunji;Kang, Dae-hwan;Go, Young-ju;Cho, Ye-ji;Choi, Eun-young;Park, Hea-Kyung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.4
    • /
    • pp.723-732
    • /
    • 2020
  • The spent RHDS (Residue HydroDeSulfurization) catalyst is deactivated mainly by deposition of various contaminants such as coke, sulfur and vanadium on the surface of catalyst. To eliminate those contaminants, the following remanufacturing process was conducted. The first, heavy oil on the surface of the spent RHDS catalyst was removed by kerosene and dehydrated. The second, the high temperature incineration was carried out to eliminate coke and sulfur components deposited on the surface of spent RHDS catalyst. The third, the excessive quantity of Vanadium deposited on the surface of catalyst was removed by leaching process as follows: ultrasonic agitation was carried out at 50℃, for 10 seconds with 0.5% and 1% oxalic acid solution. The purpose of this process is to find out regenerated RHDS catalyst can be used as SCR catalyst for NOx reduction by controlling the vanadium residual content of the regenerated RHDS catalyst through leaching process. The composition of regenerated RHDS catalyst was analyzed by XRF and the NOx reduction efficiency was also measured by continuous catalytic fixed bed reactor. As the result, regenerated catalyst, with 0.5% oxalic acid, ultrasonic agitation in 10 seconds, showed the most stable NOx reduction efficiency. Also, in comparison with commercial SCR catalyst, the NOx reduction performance of regenerated catalyst was similar to that of commercial SCR catalyst at the temperature 375℃ and higher whereas was lower than commercial SCR catalyst at the temperature range between 200~250℃. Therefore, it was confirmed that the regenerated catalyst as powder form wash coated on the surface of metal corrugated substrate can be used for commercial SCR catalyst.