• Title/Summary/Keyword: 표면젖음성

Search Result 133, Processing Time 0.024 seconds

A Study on the Wettability of Inorganic Insulator due to Plasma Surface Treatment Technique (플라즈마 표면처리 기법에 의한 무기절연물의 젖음성 변화에 관한 연구)

  • Han, Hwang-Yeong;Eom, Moo-Soo;Park, Hong-Tae;Lee, Kyu-Chul;Lee, Jong-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1292-1294
    • /
    • 1994
  • With the contact angle of phase epoxy resin on the inorganic filler(glass plate) surface treated with air plasma, we have studied about the interface between epoxy resin and glass plate as simple model of a glass fiber reinforced composite materials. The contact angle on the inorganic filler surface varied with surface treatment conditions. The contact angle significantly depends on plasma treating time and environment temperature of the oven.

  • PDF

A Study on the Surface Wettability of Inorganic Insulator (무기절연물 표면상의 젖음성 변화에 관한 연구)

  • Hwang, Yeong-Han;Eom, Moo-Soo;Lee, Kyu-Chul;Lee, Jong-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.1233-1235
    • /
    • 1993
  • With the Contact angle of phase epoxy resin on the inorganic filler(glass plate) surface treated with air plasma, we have studied about the interface between epoxy resin and glass plate as simple model of a glass fiber reinforced composite materials. The contact angle on the inorganic filler surface varied with ambient temperature and surface treatment conditions.

  • PDF

Evaluation on Hydrophobicity of the Surface of Hardened Cement Paste Produced by PDMS Mold (PDMS 몰드를 이용하여 제작된 시멘트 경화체 표면의 소수성 평가)

  • Jin, Da-Hyung;Liu, Jun-Xing;Bae, Sung-Chul
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.168-169
    • /
    • 2021
  • A hydrophobic surface increases the contact angle between water and cement paste. There are two methods to increase water contact angle, i.e. lowering the surface energy and adjusting the surface roughness of concrete. The hydrophobicity of concrete can be quantitatively evaluated according to the chemical and physical properties of the solid surface. So far, researches have shown the chemical properties of hydrophobic concrete, however it has not covered how to control surface. This study demonstrated the hydrophobic cement paste prepared by low-resolution molds printed with a 3D printer that exhibit rough surface. Thus, we presented the most hydrophobic characteristics of mold.

  • PDF

Effect of Anodized Carbon Fiber Surfaces on Interfacial Adhesion of Carbon Fiber-reinforced Composites (양극산화된 탄소섬유가 복합재료의 계면결합력에 미치는 영향)

  • 박수진;김문한;최선웅;이재락
    • Polymer(Korea)
    • /
    • v.24 no.4
    • /
    • pp.499-504
    • /
    • 2000
  • The effect of anodic oxidation on high strength PAN-based carbon fibers has been studied in terms of surface functionality and surface energetics of the fiber surfaces, resulting in improving the mechanical properties of composites. According to FT-IR and XPS measurements, it reveals that the oxygen functional groups on fiber surfaces induced by an anodic oxidation largely influence the surface energetics of fibers or the mechanical interfacial properties of composites, such as the interlaminar shear strength (ILSS) of composites. According to the contact angle measurements based on the wicking rate of a test liquid, it is observed that anodic oxidation does lead to an increase in surface free energy of the carbon fibers, mainly due to the increase of its specific (or polar) component. From the surface energetic point of view, it is found that good wetting plays an important role in improving the degree of adhesion at interfaces between fiber and epoxy resin matrix of the resulting composites. Also, a direct linear relationship is shown between 01s/01s ratio and ILSS or between specific component and ILSS of the composites for this system.

  • PDF

Novel Fabrication Process for Micro-Fluidic Channels and the Effect of the Surface States on the Fluid Flow (미세유로채널의 새로운 제작공정 및 표면상태가 유동에 미치는 영향)

  • 박미석;김진산;성인하;김대은;신보성
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.1
    • /
    • pp.87-93
    • /
    • 2004
  • Recently, with the development of bio-technology the interests in the micro-fluidic devices for analysis in the fields of biology and medical science have been steadily increasing. Although polymer is considered as one of the best materials for micro-fluidic devices. glass or silicon molds fabricated by photo-lithographic technique have been commonly used. However, it is generally perceived that the conventional photolithographic technique has the limitation for fabricating micro-channels for micro-fluidic devices. In this work, the possibility of fabrication of micro-fluidic channels on PDMS by using the mechano-chemical process and the effect of surface states on the fluid flow were investigated. Experimental results revealed that PDMS mold fabricated by the mechano-chemical process could be used effectively to replicate micro-fluidic channels with high reproducibility and dimensional accuracy. It was also found that the fluid flow generation and flow speed were largely affected by the hydrophilicity and the surface roughness of the micro-channel surfaces.

Synthesis and Physical Properties of Biocompatible and Biodegradable Polypeptide Copolymers. (1) Synthesis of Poly(ethylene glycol) grafted Polypeptides (생체적합성과 생분해성을 갖는 Polypeptide Copolymer의 합성과 물성에 관한 연구. (1) 폴리에틸렌 글리콜을 그라프트시킨 폴리펩티드의 합성)

  • Gang, In Gyu;Gwon, Dae Ryong;Jo, Jong Su;Sung, Yong Kiel
    • Journal of the Korean Chemical Society
    • /
    • v.34 no.2
    • /
    • pp.197-202
    • /
    • 1990
  • Polyethylene glycol (PEG) grafted poly γ-benzyl L-glutamate (PBLG) were prepared from esterification or substitution reaction of PBLG with PEG having hydroxyl group at one end or primary amino groups at both ends. The viscosity of these polymer solution was decreased with decrease of polymer concentration. But in more dilute solution the viscosity was increased with decrease of polymer concentration. PEG-grafted PBLG polymers showed smaller water contact angles than PBLG homopolymer, and the water contact angles of the surface of PEG-grafted PBLG polymers were largely dropped by reacting with aminoethanol, resulting in hydrogel surfaces.

  • PDF

Quick Fabrication of Three Dimensional Colloidal Crystals and Their Applications (3차원 콜로이드 광결정의 고속 제작 및 응용)

  • Lee, Su Jin;Im, Sang Hyuk
    • Korean Chemical Engineering Research
    • /
    • v.51 no.5
    • /
    • pp.640-643
    • /
    • 2013
  • On evaporation of water in polystyrene colloidal emulsion, the polystyrene colloidal particles are instantly protruded on the surface of water and are self-assembled by capillary force among the protruded particles. At the same time, the assembly of polystyrene colloidal particles is occurred on the surface of water owing to its lower effective density than water. Here we devised that the three-dimensional polystyrene colloidal crystals are quickly transferred onto the glass substrate by constructing wettable confined geometry on the glass substrate. We also applied the three-dimensional colloidal crystals to optical filters reflecting certain wavelength of light selectively by tuning the size of building blocks and incident angle of light.

Development of New Fiber Reinforced Campsite Materials by Reactive Plasma Surface Treatmnt - (I) Improving the Wettability on the Glass Plate by Plasma Surface Treatment - (반응성 플라즈마 표면처리 기법을 도입한 새로운 유리섬유강화 복합재료의 개발 및 물성연구 - (I) Plasma처리에 의한 평판유리표면의 젖음성 개선에 관한 연구 -)

  • Song, I Y.;Byun, S.M.;Kim, S.T.;Cho, J.S.;Kim, G.S.;Park, C.H.
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.581-583
    • /
    • 1993
  • One of the principal problems encountered in the use of fiber reinforced composites is to establish an active fiber surface to achieve maximum adhesion between resin and fiber surface. In order to improve the interface bonding, the surface of glass fiber should be treated with silane coupling agent in ordinary composite manufacturing processes. However, the price of the coupling agent is very high and in the treating process voids are formed, which decreasees electrical and mechanical strength. We want to develope new process that will overcome the disadvantage of the coupling agent and achieve maximum adhesion at the interface between resin and fiber by active plasma treatment on the glass fiber surface. In this study, we investigate the improvement of contact angle on the glass plate surface as the first step in developing new GFRP.

  • PDF

Wettability of Lubricant-Impregnated Electroplated Zinc Surface with Nanostructure (윤활유가 침지된 나노구조 전기아연도금층의 젖음성)

  • Jung, Haechang;Kim, Wang Ryeol;Jeong, Chanyoung;Lee, Junghoon
    • Journal of Surface Science and Engineering
    • /
    • v.52 no.1
    • /
    • pp.37-42
    • /
    • 2019
  • Electrodeposited zinc layer is widely used as a sacrificial anode for a corrosion protection of steel. In this study, we modified the surface of electrodeposited zinc to have a hydrophobicity, which shows various advanced functionalities, such as anti-corrosion, anti-biofouling, anti-icing and self-cleaning, due to its repellency to liquids. Superhydrophobicity was realized on electrodeposited zinc layer with a hydrothermal treatment, creating nanostructures on the surface, and following Teflon coating. The superhydrophobic surface shows a great repellency to water with high surface tension, while liquid droplets with low surface tension easily adhered on the superhydrophobic surface. However, immiscible lubricant-impregnated superhydrophobic surface shows a great repellency to various liquids, regardless of their surface tension. Therefore, it is expected that the lubricant-impregnated surface can be an alternative of superhydrophobic surface, which have a drawback for some liquids with a low surface tension.

Properties of Silicon Coated Fabric for Membrane Treated by Low Temperature Plasma (저온플라즈마 처리에 의한 실리콘코팅 막구조 원단의 특성변화)

  • Park, Beob;Lee, Jang-Hun;Koo, Kang
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2011.03a
    • /
    • pp.60-60
    • /
    • 2011
  • 막구조는 근래에 와서 대공간 구조 및 지붕구조에 가장 보편적으로 사용되는 경량 인장 구조물로 각광받고 있다. 구조용 막재는 풍하중 및 설하중에 충분히 감당할 수 있도록 강도와 내구성을 가지고 있어야 한다. 일반적으로 막구조 재는 PVC코팅 폴리에스터막, 실리콘코팅 유리섬유막, PTFE코팅 유리섬유막이 있다. 제직되는 원단의 크기가 한정되어 있기 때문에 재단 후 접착하여 제작한다. 이 때문에 이음부분이 나 재단부분에 코팅으로 인한 접착이 어려워 고온고압으로 접착을 한다. 이 연구에서는 실리콘코팅 유리섬유막의 접착시 어려움을 보완하기 위해 저온 Plasma를 이용한 처리법으로 방전에 의해 Plasma를 발생시켜 50w, 100w 출력으로 10분, 20분간 처리하여 그 결과를 접촉각과 SEM 관찰을 통해 표면처리를 관찰하였다. Plasma 처리로 인해 실리콘 표면층에 균열이 발생하고 표면이 갈라짐을 확인할 수 있었다. 접촉각측정 결과 Plasma 출력과 시간의 증가함에 따라 접촉각은 감소하였다. 실리콘코팅 원단에 저온 Plasma 처리한 후 표면 특성을 분석하고 원단을 접착을 시켜 박리 강도를 측정함으로써 막구조 원단의 접착력 향상에 대한 연구를 진행하였다. KS K 0533 접착포의 박리 강도 시험방법으로 실리콘코팅 원단의 박리 강도를 측정한 결과 플라즈마 처리 원단이 플라즈마 미처리 원단보다 박리 강도가 향상된 것을 확인할 수 있었다. 저온 Plasma 처리 시간이 증가할수록 표면의 젖음성을 향상시켜 접촉각을 낮추었다. 이는 곧 표면에너지의 증가를 뜻하는 것으로 접착력을 증가시켜 실리콘코팅 원단의 접착성을 시킴으로써 강한 강도와 내구성을 갖춘 막구조물의 개발에 기대되고 있다.

  • PDF