• Title/Summary/Keyword: 표면응력

Search Result 1,007, Processing Time 0.031 seconds

A Preliminary Study of Flume Experiments on the Flow Velocity for Initial Formation of Bedforms on Bimodal Sand-sized Sediments (이정 사질 퇴적물의 층면구조 형성 속도에 대한 수조 실험 예비 연구)

  • Kim, Hyun Woo;Choi, Su Ji;Choi, Ji Soo;Kwon, Yoo Jin;Lee, Sang Cheol;Kwak, Chang Hwan;Kwon, Yi Kyun
    • Journal of the Korean earth science society
    • /
    • v.37 no.4
    • /
    • pp.218-229
    • /
    • 2016
  • The bedform stability diagram indicates the shape and size of bedforms that will occur to a given grain size and flow velocity. The diagram has been constructed from experimental data which have been mostly acquired by flume experiments. Generally, the flume experiments have been performed on well sorted sediments with unimodal grain size distribution, in order to understand relationship between grain size and flow velocity. According to the diagram, a ripple structure initiates to be formed from lower flow regime flat bed, as the flow velocity increases on the surface of fine-sand or medium-sand sediments. This study aims to verify that the experimental result of bedform stability diagram will be reproduced in our flume experimental systems, and also to confirm that the result is consistent not only on well-sorted sand sediments but also on poorly-sorted sand sediments with bimodal grain size distribution. The experimental results in this study show that initiation of 2D or 3D ripple structure on poorly-sorted sand sediments requires higher flow velocity and shear stress than those for initiation of the structure on well-sorted sand sediments. In general, carbonate sediments are characterized by poor sorting due to inactive hydraulic sorting and bimodal grain size distribution with allochems and matrices. The results suggest that the carbonate depositional system possibly need a higher flow velocity for initial formation of 2D or 3D bedform structures. The reason might be the fact that pulling off and lifting of a grain in poorly sorted sediments require more energy due to sorting, friction, stabilization, armour effects, and their complex interaction. This preliminary study warrants additional experiments under various conditions and more accurate analysis on the relationship between formation of bedforms and grain size distribution.

Characteristics of Membrane Permeability on the Separation of Solid in a Liquid Livestock Manure (축분액비의 고액분리에 있어서 분리막의 투과특성)

  • 황명구;차기철;이명규
    • Journal of Animal Environmental Science
    • /
    • v.6 no.3
    • /
    • pp.175-184
    • /
    • 2000
  • A lab-scale MF membrane reactor was installed to investigate the membrane permeability, characteristics of membrane fouling at each conditions, and quality of permeate (liquid livestock manure) in the separation of solid-matters using membrane. Experiment was divided three filtration type such as follows; continuous filtration, gravity filtration, and intermittent filtration. As a result of experiment, flux 1 LMH was maintained for 7days, and trans-membrane pressure(TMP) was increased gradually under 10cmHg, but it was increased immediately after 10cmHg, respectively. However, the flux was increased, the Tmax was decreased exponential more and more. During the pure-flux test, most of the fouling of membrane was reversible. At the gravity filtration, permeate could be obtained as 1.75 LMH for 3.5days without any other electronic pressure. As an investigation of membrane surface, this study could be decided that the reason of fouling at the lower flux (Run 1 and 2) was attached matters in membrane surface, but at the higher flux (Run 4-6) was concentration polarization.

  • PDF

Structural Safety Test and Analysis of Type IP-2 Transport Packages with Bolted Lid Type and Thick Steel Plate for Radioactive Waste Drums in a NPP (원자력발전소의 방사성폐기물 드럼 운반을 위한 볼트체결방식의 두꺼운 철판을 이용한 IP-2형 운반용기의 구조 안전성 해석 및 시험)

  • Lee, Sang-Jin;Kim, Dong-hak;Lee, Kyung-Ho;Kim, Jeong-Mook;Seo, Ki-Seog
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.5 no.3
    • /
    • pp.199-212
    • /
    • 2007
  • If a type IP-2 transport package were to be subjected to a free drop test and a penetration test under the normal conditions of transport, it should prevent a loss or dispersal of the radioactive contents and a more than 20% increase in the maximum radiation level at any external surface of the package. In this paper, we suggested the analytic method to evaluate the structural safety of a type IP-2 transport package using a thick steel plate for a structure part and a bolt for tying a bolt. Using an analysis a loss or dispersal of the radioactive contents and a loss of shielding integrity were confirmed for two kinds of type IP-2 transport packages to transport radioactive waste drums from a waste facility to a temporary storage site in a nuclear power plant. Under the free drop condition the maximum average stress at the bolts and the maximum opening displacement of a lid were compared with the tensile stress of a bolt and the steps in a lid, which were made to avoid a streaming radiation in the shielding path, to evaluate a loss or dispersal of radioactive waste contents. Also a loss of shielding integrity was evaluated using the maximum decrease in a shielding thickness. To verify the impact dynamic analysis for free drop test condition and evaluate experimentally the safety of two kinds of type IP-2 transport packages, free drop tests were conducted with various drop directions. For the tests we examined the failure of bolts and the deformation of flange to evaluate a loss or dispersal of radioactive material and measured the shielding thickness using a ultrasonic thickness gauge to assess a loss of shielding integrity. The strains and accelerations acquired from tests were compared with those by analyses to verify the impact dynamic analysis. The analytic results were larger than the those of test so that the analysis showed the conservative results. Finally, we evaluated the safety of the type IP-2 transport package under the stacking test condition using a finite element analysis. Under the stacking test condition, the maximum Tresca stress of the shielding material was 1/3 of the yielding stress. Two kinds of a type IP-2 transport package were safe for the free drop test condition and the stacking test condition.

  • PDF

Strain Improvement and Bioprocess Optimization for Enhanced Production of Haluronic Acid(HA) in Bioreactor Cultures of Streptococcus zooepidemicus (히알루론산 생산성 향상을 위한 Streptococcus zooepidemicus 균주 개량 및 발효조 배양공정 최적화)

  • Kim, Soo Yeon;Chun, Gie-Taek
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.3
    • /
    • pp.344-357
    • /
    • 2020
  • Strain improvement and bioprocess development were undertaken to enhance hyaluronic acid(HA) production by Streptococcus zooepidemicus cells. Using a high-yielding mutant strain, statistical medium optimization was carried out in shake flask cultures, resulting in 52% increase in HA production (5.38 g/l) at the optimal medium composition relative to the parallel control cultures. For sufficient supply of dissolved oxygen (DO), which turned out to be crucial for enhanced production of HA, agitation system and speed were intensively investigated in 5 L bioreactor cultures. Increase in oxygen mass transfer coefficient (kLa) through increment of agitation speed (rpm) and 35% expansion of diameter of the newly-designed impellers showed significantly positive effects on HA production. By installing an expanded Rushton-turbine impeller for efficient break-down of sparged air, and an extended marine impeller above the Rushton-turbine impeller for efficient mixing of the air-born viscous fermentation broth, maximum amount of HA (9.79 g/l) was obtained at 450 rpm, 1.8 times higher level than that of the corresponding flask culture. Subsequently, the possibility of bioprocess scale-up to a 50 L bioreactor was investigated. Despite almost identical maximum HA production (9.11 vs 9.25 g/l), the average HA volumetric productivity (rp) of the 50 L culture turned out only 74% compared to the corresponding 5 L culture during the exponential phase, possibly caused by shear damages imposed on the producing cells at the high stirring in the 50 L culture. The scale-up process could be successfully achieved if a scale-up criterion of constant oxygen mass transfer coefficient (kLa) is applied to the 50 L pilot-scale bioreactor system.

Suppression of misfit dislocations in heavily boron-doped silicon layers for micro-machining (마이크로 머시닝을 위한 고농도로 붕소가 도핑된 실리콘 층의 부정합 전위의 억제)

  • 이호준;김하수;한철희;김충기
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.2
    • /
    • pp.96-113
    • /
    • 1996
  • It has been found that the misfit dislocations in heavily boron-doped layers originate from wafer edges. Moreover, the propagation of the misfit dislocation into a heavily boron-doped region can be suppressed by placing a surrounding undoped region. Using a surrounding undoped region the disloction-free heavily boron-deoped silicon membranes have been fabricated. The measured surface roughness, fracture strength, and residual tensile stress of the membrane are 20.angs. peak-to-peak, 1.39${\times}$10$^{10}$ and 2.7${\times}$10$^{9}$dyn/cm$^{2}$, while those of the conventional heavily boron-doped silicon membrane with high density of misfit dislocations are 500 peak-to-peak, 8.27${\times}$10$^{9}$ and 9.3${\times}$10$^{8}$dyn/cm$^{2}$ respectively. The differences between these two membranes are due to the misfit dislocations. Young's modulus has been extracted as 1.45${\times}$10$^{12}$dyn/cm$^{2}$ for both membranes. Also, the effective lattice constant of heavily boron-doped silicon, the in-plane lattice constant of the conventional membrane, and the density of misfit dislocation contained in the conventional membrane have been extracted as density of misfit dislocation contained in the conventional membrane have been extracted as density of misfit dislocation contained in the conventional membrane have been extracted as 5.424.angs. 5.426.angs. and 2.3${\times}$10$^{4}$/cm for the average boron concentration of 1.3${\times}$10$^{20}$/cm$^{-23}$ cm$^{3}$/atom. Without any buffer layers, a disloction-free lightly boron-doped epitaxial layer with good crsytalline quality has been directly grown on the dislocation-free heavily boron-doped silicon layer. X-ray diffraction analysis revealed that the epitaxial silicon has good crystallinity, similar to that grown on lightly doped silicon substrate. The leakage current of the n+/p gated diode fabricated in the epitaxial silicon has been measured to be 0.6nA/cm$^{2}$ at the reverse bias of 5V.

  • PDF

Nondestructive Evaluation and Microfailure Mechanisms of Single Fibers/Brittle Cement Matrix Composites using Electro-Micromechanical Technique and Acoustic Emission (Electro-Micromechanical 시험법과 Acoustic Emission을 이용한 단섬유/시멘트 복합재료의 미세파괴 메커니즘과 비파괴적 평가)

  • 박종만;이상일;김진원;윤동진
    • Composites Research
    • /
    • v.14 no.3
    • /
    • pp.18-31
    • /
    • 2001
  • Interfacial and microfailure properties of the modified steel, carbon and glass fibers/cement composites were investigated using electro-pullout test under tensile and compressive tests with acoustic emission (AE). The hand-sanded steel composite exhibited higher interfacial shear strength (IFSS) than the untreated and even neoalkoxy zirconate (Zr) treated steel fiber composites. This might be due to the enhanced mechanical interlocking, compared to possible hydrogen or covalent bonds. During curing process, the contact resistivity decreased rapidly at the initial stage and then showed a level-off. Comparing to the untreated case, the contact resistivity of either Zr-treated or hand-sanded steel fiber composites increased to the infinity at latter stage. The number of AE signals of hand-sanded steel fiber composite was much more than those of the untreated and Zr-treated cases due to many interlayer failure signals. AE waveforms for pullout and frictional signals of the hand-sanded composite are larger than those of the untreated case. For dual matrix composite (DMC), AE energy and waveform under compressive loading were much higher and larger than those under tensile loading, due to brittle but well-enduring ceramic nature against compressive stress. Vertical multicrack exhibits fur glass fiber composite under tensile test, whereas buckling failure appeared under compressive loading. Electro-micromechanical technique with AE can be used as an efficient nondestructive (NDT) method to evaluate the interfacial and microfailure mechanisms for conductive fibers/brittle and nontransparent cement composites.

  • PDF

Phosphate Concentration Dependent Degradation of Biofilm in S. aureus Triggered by Physical Properties (인산염 농도에 따른 물성 변화로 발생하는 황색포도상구균 바이오필름 제거 현상)

  • Song, Sang-Hun;Hwang, Byung Woo;Son, Seong Kil;Kang, Nae-Gyu
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.47 no.4
    • /
    • pp.361-368
    • /
    • 2021
  • The objective of this study was to establish technology for removing bacteria with human- and eco-friendly material. Staphylococcus aureus as an important component for balanced equilibrium among microbiomes, was cultured under various concentrations of phosphate. Experimental observation relating to physical properties was performed in an addition of phosphate buffer. Statistically minimum value of size and hardness using atomic force microscope was observed on the matured biofilm at 5 mM concentration of phosphate. As a result of absorbance for the biofilm tagged with dye, concentration of biofilm was reduced with phophate, too. To identify whether this reduction by phosphate at the 5 mM is caused by counter ion or not, sodium chloride was treated to the biofilm under the same condition. To elucidate components of the biofilm counting analysis of the biofilm using time-of-flight secondary ion mass spectrometry was employed. The secondary ions from the biofilm revealed that alteration of physical properties is consistent to the change of extracellular polymeric substrate (EPS) for the biofilm. Viscoelastic characterization of the biofilm using a controlled shear stress rheometer, where internal change of physical properties could be detected, exhibited a static viscosity and a reduction of elastic modulus at the 5 mM concentration of phosphate. Accordingly, bacteria at the 5 mM concentration of phosphate are attributed to removing the EPS through a reduction of elastic modulus for bacteria. We suggest that the reduction of concentration of biofilm induces dispersion which assists to easily spread its dormitory. In conclusion, it is elucidated that an addition of phosphate causes removal of EPS, and that causes a function of antibiotic.