• Title/Summary/Keyword: 표면염화물이온농도

Search Result 5, Processing Time 0.019 seconds

The Estimation of Surface Chloride Content and Durability of the Marine Concrete Bridges in South Coast (남해안 해상 콘크리트 교량의 표면염화물이온농도 및 내구성 평가)

  • Jung, Dae-Jin;Choi, Ik-Chang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.6
    • /
    • pp.730-737
    • /
    • 2014
  • In this study, chloride content of marine concrete bridge at the south coast in 5~34years was calculated based on the measured data and the validity of the proposed value was evaluated. Also, correlation of existence of salt injury prevention coating, chloride content, carbonation depth and the compressive strength of marine concrete bridges were derived and relationship of the four was evaluated. According to the research results, surface chloride content value in the tidal zone proposed form KCI 2009 and value in the splash zone and atmospheric zone proposed form Cheong et al.(2005) was the most valid. Also, salt injury prevention coating of marine concrete bridges had the outstanding effect of preventing chloride content penetration, carbonation depth and reduction in the compressive strength. Compressive strength of concrete was reduced by the increase of carbonation depth and chloride content.

Relationship Analysis between Half Cell Potential and Open Circuit Potential Considering Temperature Condition (온도 영향을 고려한 RC 구조의 반 전위 및 OCP의 상관성 분석)

  • Yoon, Yong-Sik;Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.1
    • /
    • pp.124-132
    • /
    • 2022
  • The corrosion potential in concrete varies greatly with exposure and concrete mix conditions. In this study, RC (Reinforcement Concrete) samples were prepared considering cover depth, chloride concentration, and W/C(water to cement) ratio as variables, and HCP(Half Cell Potential) was measured, which evaluated comparative potential between embedded steel and concrete surface. In addition, OCP(Open Circuit Potential) was measured using buried steel and CE(Counter Electrode). Agar and NaOH solution were used as ion exchange materials and Hg/HgO was used for RE(Reference Electrode), which was more sensitive to temperature than HCP. Among the influencing factors, the exposure period and chloride concentration had a relatively greater effect than cover depth and w/c ratio. Additionally, the entire measured HCP and OCP showed a clearly linear relationship with increasing cover depth and w/c ratio. Through multiple regression analysis, the relationship between HCP and OCP was quantified, and an improved correlation was obtained with temperature effect.

Influence of Water-Cement Ratios and Curing Conditions on the Diffusion Characteristics of Chloride Ion in Concrete (콘크리트의 염소이온 확산특성에 미치는 물-시멘트비 및 양생조건의 영향)

  • Bae, Su-Ho;Lee, Kwang-Myong;Kim, Jee-Sang;Jung, Sang-Hwa
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4A
    • /
    • pp.753-759
    • /
    • 2006
  • To predict service life of concrete structures exposed to chloride attack, surface chloride concentration, diffusion coefficient of chloride ion, and chloride corrosion threshold value in concrete, are used as important factors. Of these, as the diffusion coefficient of chloride ion for concrete is strongly influenced by concrete quality and environmental conditions of structures and may significantly change the service life of structures, it is considered as the most important factor for service life prediction. The qualitative factors affecting the penetration and diffusion of chloride ion into concrete are water-cement (W/C) ratio, age, curing conditions, chloride ion concentration of given environment, wet and dry conditions, etc. In this paper the influence of W/C ratio and curing conditions on the diffusion characteristics of chloride ion in concrete was investigated through the chloride ion diffusion test. In the test, the voltages passing through the diffusion cell were measured by accelerated test method using potential difference, and then with the consideration of IR drop ratio the diffusion coefficient of chloride ion for concrete with different W/C ratios were estimated by Andrade's model. Furthermore, under different curing conditions formulas for the estimation of the diffusion coefficient of chloride ion have been proposed by the regression analysis considering the effect of W/C ratio and age.

Influence of Carbonation on the Chloride Diffusion in Concrete (탄산화 현상이 콘크리트 중의 염소이온 확산에 미치는 영향 연구)

  • Oh, Byung-Hwan;Lee, Sung-Kyu;Lee, Myung-Kue;Jung, Sang-Hwa
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.6
    • /
    • pp.829-839
    • /
    • 2003
  • Recently, the corrosion of reinforced concrete structures has received great attention related with the deterioration of sea-side structures, such as new airport, bridges, and nuclear power plants. In this regards, many studies have been done on the chloride attack in concrete structures. However, those studies were confined mostly to the single deterioration due to chloride only, although actual environment is rather of combined type. The purpose of the present study is, therefore, to explore the influences of carbonation to chloride attack in concrete structures. The test results indicate that the chloride penetration is more pronounced than the case of single chloride attack when the carbonation process is combined with the chloride attack. It is supposed that the chloride ion concentration of carbonation region is higher than the sound region because of the separation of fixed salts. Though the use of fly ash pronounces the chloride ion concentration in surface, amounts of chloride ion penetration into deep region decreases with the use of fly ash. The present study allows more realistic assessment of durability for such concrete structures which are subjected to combined attacks of both chlorides and carbonation but the future studies for combined environment will assure the precise assessment.

The Sensitivity Evaluation of Probability Variables to Durability Design of the RC Structures (철근콘크리트 구조물 염해 내구설계에 있어서 설계확률변수의 민감도 평가)

  • Park, Dong-Cheon;Oh, Sang-Gyun
    • Journal of Navigation and Port Research
    • /
    • v.33 no.3
    • /
    • pp.235-240
    • /
    • 2009
  • Simulation method based on probability was developed to evaluate the durability of reinforced concrete structures about chloride attack. The effects of the probability parameters(surface chloride ion concentration, initial combined chloride ion concentration, the depth of cover thickness of concrete, and the chloride ion diffusion coefficient), probability distribution function and it's variation were calculated using the Monte Carlo method and Fick's 2nd law. From the durability design method proposed in this study, the following results were obtained. 1) The effects of the distance from the coast and the chloride ion diffusion coefficient to the corrosion probability were quite high. 2) The effect of the variation of each parameters was relatively low.