• Title/Summary/Keyword: 표면압력

Search Result 1,278, Processing Time 0.031 seconds

Derivation of Subcompartment Heat Transfer Correlation from HDR Tests (HDR 실험에 근거한 격납용기 구분방내의 열전달 상관식 도출)

  • Lee, Un-Chul
    • Nuclear Engineering and Technology
    • /
    • v.19 no.2
    • /
    • pp.77-84
    • /
    • 1987
  • Statistical evaluation for the heat transfer correlation in the containment subcompartments is carried out from HDR experimental data. Heat transfer data for three HDR blowdown tests, V.42, V.43 and V.44, are analyzed to deduce the correlation. As Uchida already proposed, air-to-steam density ratio is proven to be the most affecting parameter in this study. Here Uchida heat transfer correlation is revised by including temperature difference between the atmosphere and the wall surface, and atmospheric pressure. In addition to these dependencies, atmospheric turbulence and time factor may be included in the model. This implication, however, is not successful, because turbulence and transient phenomena were not adequately quantified in the HDR program. It is concluded that a strong correlation exists between the heat transfer coefficient and temperature differences, specially for forced circulation conditions.

  • PDF

Pixel level prediction of dynamic pressure distribution on hull surface based on convolutional neural network (합성곱 신경망 기반 선체 표면 압력 분포의 픽셀 수준 예측)

  • Kim, Dayeon;Seo, Jeongbeom;Lee, Inwon
    • Journal of the Korean Society of Visualization
    • /
    • v.20 no.2
    • /
    • pp.78-85
    • /
    • 2022
  • In these days, the rapid development in prediction technology using artificial intelligent is being applied in a variety of engineering fields. Especially, dimensionality reduction technologies such as autoencoder and convolutional neural network have enabled the classification and regression of high-dimensional data. In particular, pixel level prediction technology enables semantic segmentation (fine-grained classification), or physical value prediction for each pixel such as depth or surface normal estimation. In this study, the pressure distribution of the ship's surface was estimated at the pixel level based on the artificial neural network. First, a potential flow analysis was performed on the hull form data generated by transforming the baseline hull form data to construct 429 datasets for learning. Thereafter, a neural network with a U-shape structure was configured to learn the pressure value at the node position of the pretreated hull form. As a result, for the hull form included in training set, it was confirmed that the neural network can make a good prediction for pressure distribution. But in case of container ship, which is not included and have different characteristics, the network couldn't give a reasonable result.

Analysis of Environmental Factors Affecting the Machining Accuracy (가공정밀도에 영향을 미치는 환경요소 분석)

  • Kim, Young Bok;Lee, Wee Sam;Park, June;Hwang, Yeon;Lee, June Key
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.7
    • /
    • pp.15-24
    • /
    • 2021
  • In this paper, to analyze the types of surface morphology error according to factors that cause machining error, the experiments were conducted in the ultra-precision diamond machine using a diamond tool. The factors causing machining error were classified into the pressure variation of compressed air, external shock, tool errors, machining conditions (rotational speed and feed rate), tool wear, and vibration. The pressure variation of compressed air causes a form accuracy error with waviness. An external shock causes a ring-shaped surface defect. The installed diamond tool for machining often has height error, feed-direction position error, and radius size error. The types of form accuracy error according to the tool's errors were analyzed by CAD simulation. The surface roughness is dependent on the tool radius, rotational speed, and feed rate. It was confirmed that the surface roughness was significantly affected by tool wear and vibration, and the surface roughness of Rz 0.0105 ㎛ was achieved.

Effect of the Distance Between Two Buildings on the Building Wind for the Vertiport Construction (버티포트 건축을 위한 2개의 고층 건물 간 거리 변화가 빌딩풍에 미치는 영향)

  • Inseo, Choi;Cheolhuei, Han
    • Journal of Institute of Convergence Technology
    • /
    • v.12 no.1
    • /
    • pp.25-30
    • /
    • 2022
  • 도심항공교통은 다수의 전기추진 수직이착륙 항공기가 이착륙 가능한 버티포트가 필요하다. 빌딩풍은 고층건물 주변부에서 발생하는 강풍으로 항공기 이착륙과정에서 항공기의 비행 안전성을 크게 훼손시킬수 있다. 본 연구에서는 항공기 이착륙시 발생할 비행안정성 분석을 위하여 먼저 빌딩풍 주변의 유동특성을 분석하는 연구를 수행하였다. 유동해석은 상용CFD 소프트웨어인 SimericsMP를 사용하였으며, 난류 모델은 k-ε RNG 모델을 사용하였다. 해석방법의 타당성을 검증하기 위하여 CAARC 빌딩모델의 표면 압력 계산결과를 풍동시험 결과와 비교⋅검증하였다. 두 개의 고충빌딩이 있는 상황을 가정한 후, 빌딩풍이 빌딩 주변부의 속도분포 변화에 미치는 영향을 분석하였다. 두 개의 고층 건물 사이의 거리가 증가하는 경우 와들 사이의 상호작용이 감소하는 것을 확인했다. 향후 본 연구를 확장하여 다양한 형상의 고충건물이 밀집해 있는 도심지역에 대한 유동해석 연구를 진행하고자 한다.

Implementation of Dynamic Context-Awareness Platform for IoT Loading Waste Fire-Prevention based on Universal Middleware (유니버설미들웨어기반의 IoT 적재폐기물 화재예방 동적 상황인지 플랫폼 구축)

  • Lee, Hae-Jun;Hwang, Chigon;Yoon, Changpyo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.346-348
    • /
    • 2022
  • A monitoring system was constructed to identify the cause of occurrence based on data on the analysis of the ignition factors of fermentation heat generated from loading waste. Universal Middleware was used to provide a real-time run-time environment for the configuration and speed of scenarios for each type of fire early warning. It is necessary to dynamically recognize the loading height and pressure of the loading waste, the drying of wood, batteries, and plastic waste, which are representative compositional wastes, and the carbonization changes on the surface. Therefore, this IoT situation recognition platform for analyzing low-temperature-fired fire possibility data was dynamically configured and presented.

  • PDF

Effects of an $Al_2$O$_3$Surfasce Protective Layer on the Sensing Properties of $SnO_2$Thin Film Gas Sensors (Al$_2$O$_3$ 표면 보호층이 박막형 $SnO_2$ 가스센서의 감지 특성에 미치는 영향)

  • Seong, Gyeong-Pil;Choe, Dong-Su;Kim, Jin-Hyeok;Mun, Jong-Ha;Myeong, Tae-Ho
    • Korean Journal of Materials Research
    • /
    • v.10 no.11
    • /
    • pp.778-783
    • /
    • 2000
  • Effects of the $Al_2$O$_3$surface protective layer, deposited on the SnO$_2$sensing layer by aerosol flame deposition (AFD) method, on the sensing properties of SnO$_2$thin film ags sensors were investigated.Effects of Pt doping to the $Al_2$O$_3$surface protective layer on the selectivity of CH$_4$ gas were also investigated. 0.3$\mu\textrm{m}$ thick SnO$_2$thin sensing layers on Pt electrodes were prepared by R.F. magnetron sputtering with R.F. power of 50 W, at working pressure of 4mTorr, and at 20$0^{\circ}C$ for 30 min. $Al_2$O$_3$surface protective layers on SnO$_2$layers were prepared by AFD using a diluted aluminum nitrade (Al(NO$_3$).9$H_2O$) solution. The sensitivity of CO gas in the SnO$_2$gas sensor with an $Al_2$O$_3$surface protective layer was significantly decreased. But that of CH$_4$gas remained almost same with pure SnO$_2$gas sensor. This result shows that the selectivity of CH$_4$gas is increased because of the $Al_2$O$_3$surface protective layer. In the case of SnO$_2$gas sensors with Pt-doped $Al_2$O$_3$surface protective layers, low sensing property to CO gas and high sensing property to CH$_4$were observed. This results in the increasing of selectivity of CH$_4$gas selectivity are discussed.

  • PDF

A Study on the Peel Strength of Silane-treated Silicas-filled Epoxy Adhesives (실란처리 되어진 실리카가 첨가된 에폭시 접착제의 접착박리강도에 관한 연구)

  • Choi, Bo-Kyung;Kim, Hong-Gun;Seo, Min-Kang;Park, Soo-Jin
    • Applied Chemistry for Engineering
    • /
    • v.25 no.5
    • /
    • pp.520-525
    • /
    • 2014
  • In this paper, the effect of silane-treated silicas and epoxidized soybean oil (ESBO) addition on adhesion properties of silicas-filled epoxy adhesives was examined. The silicas were treated by ${\gamma}$-methacryloxy propyltrimethoxy silane (MPS), ${\gamma}$-glycidoxy propyl trimethoxy silane (GPS), and ${\gamma}$-mercapto propyl trimethoxy silane (MCPS). Surface and structural properties of the adhesives were determined by using scanning electron microscope (SEM) and Fourier transform infrared spectroscopy (FT-IR). The t-peel strength of the adhesives was estimated using the universal testing machine (UTM). And, the equilibrium spreading pressure, surface free energy, and specific surface area were investigated by BET methods with $N_2$/77 K adsorption. As a result, the peel strength of the adhesives was increased in the presence of silane-treated silicas in the adhesives compared to that of untreated silicas. This result indicated that the silane coupling agent played an important role in improving the dispersion of silicas in epoxy adhesives. And, the adhesives treated by MCPS were superior to the others in adhesion.

A Study on the etching mechanism of $CeO_2$ thin film by high density plasma (고밀도 플라즈마에 의한 $CeO_2$ 박막의 식각 메커니즘 연구)

  • Oh, Chang-Seok;Kim, Chang-Il
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.12
    • /
    • pp.8-13
    • /
    • 2001
  • Cerium oxide ($CeO_2$) thin film has been proposed as a buffer layer between the ferroelectric thin film and the Si substrate in Metal-Ferroelectric-Insulator-Silicon (MFIS) structures for ferroelectric random access memory (FRAM) applications. In this study, $CeO_2$ thin films were etched with $Cl_2$/Ar gas mixture in an inductively coupled plasma (ICP). Etch properties were measured for different gas mixing ratio of $Cl_2$($Cl_2$+Ar) while the other process conditions were fixed at RF power (600 W), dc bias voltage (-200 V), and chamber pressure (15 mTorr). The highest etch rate of $CeO_2$ thin film was 230 ${\AA}$/min and the selectivity of $CeO_2$ to $YMnO_3$ was 1.83 at $Cl_2$($Cl_2$+Ar gas mixing ratio of 0.2. The surface reaction of the etched $CeO_2$ thin films was investigated using x-ray photoelectron spectroscopy (XPS) analysis. There is a Ce-Cl bonding by chemical reaction between Ce and Cl. The results of secondary ion mass spectrometer (SIMS) analysis were compared with the results of XPS analysis and the Ce-Cl bonding was monitored at 176.15 (a.m.u). These results confirm that Ce atoms of $CeO_2$ thin films react with chlorine and a compound such as CeCl remains on the surface of etched $CeO_2$ thin films. These products can be removed by Ar ion bombardment.

  • PDF

Development of high performance and low noise axial-flow fan for cooling machine room of refrigerator using airfoil-cascade analysis and surface ridge shape (익렬 분석 및 표면 돌기 형상을 이용한 냉장고 기계실 냉각용 고성능/저소음 축류팬 개발)

  • Choi, Jinho;Ryu, Seo-Yoon;Cheong, Cheolung;Kim, Tae-hoon;Koo, Junhyo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.6
    • /
    • pp.515-523
    • /
    • 2020
  • This study aims to improve the flow and noise performances of an axial-flow fan for cooling the machine room in a refrigerator by using airfoil-cascade analysis and surface ridge shape. First, the experimental evaluations using a fan performance tester and an anechoic chamber are performed to analyze the flow and noise performances of the existing fan system. Then, the corresponding flow and noise performances are numerically assessed using the Computational Fluid Dynamics (CFD) techniques and the Ffowcs-Williams and Hawkings (FW-H) equation, and the validity of numerical results are confirmed through their comparisons with the experimental results. The analysis for the flow of a cascade of airfoils constructed from the existing fan blades is performed, and the pitch angles for the maximum lift-to-drag ratio are determined. The improved flow performance of the new fan applied with the optimum pitch angles is confirmed. Then, the fan blades with surface ridges on their pressure sides are devised, and the reduction of aerodynamic noise of the ridged fan is numerically confirmed. Finally, the prototype of the final fan model is manufactured, and improvements in the flow and noise performances of the prototype are experimentally confirmed.

Effect of Major Factors on the Spray Characteristics of Ultrasonic Atomizing Nozzle (초음파 미립화 노즐의 분무 특성에 미치는 주요 인자의 영향)

  • Jeong, Seon Yong;Lee, Kye Bock
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.6
    • /
    • pp.1-7
    • /
    • 2017
  • The atomization of a liquid into multiple droplets has many important industrial applications, including the atomization of fuels in combustion processes and coating of surfaces and particles. Ultrasonic atomizing nozzle has a transducer that receives electrical input in the form of a high frequency signal from a power generator and converts that into mechanical energy at the same frequency. Liquid is atomized into a fine mist spray using high frequency sound vibrations. In coating applications, the unpressurized, low-velocity spray reduces the amount of overspray significantly because the droplets tend to settle on the substrate, rather than bouncing off it. The spray can be controlled and shaped precisely by entraining the slow-moving spray in an ancillary air stream using specialized types of spray-shaping equipment. The desired patterns of spray can be obtained using an air stream. To simulate the water mist behavior of an ultrasonic atomizing nozzle using an air stream, the Lagrangian dispersed phase model was employed using the commercial code FLUENT. The effects of the nozzle contraction shape, water droplet size and the pneumatic pressure drop on the spray characteristics were investigated to obtain the optimal condition for coating applications.