• Title/Summary/Keyword: 표면근사

Search Result 249, Processing Time 0.022 seconds

Electromagnetic Wave Scattering from a Perfectly Conducting Fractional Brownian Motion Fractal Surface Using a Monte-Carlo FDTD Method (몬테칼로 유한차분 시간영역 방법을 이용한 프랙셔널 브라운 모션 프랙탈 완전도체 표면에서의 전자파 산란)

  • Choi, Dong-Muk;Kim, Che-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.2A
    • /
    • pp.63-69
    • /
    • 2003
  • In this paper, the scattered field from a perfectly conducting fractal surface by Finite-Difference Time-Domain(FDTD) method was computed. A one-dimensional fractal surface was generated by using the fractional Brownian motion model. Back scattering coefficients are calculated with different values of the spectral parameter(S0), fractal dimension(D) which determine characteristics of the fractal surface. The number of surface realization for the computed field, the point number, and the width of surface realization are set to be 80, 1024, 16λ, respectively. In order to verify the computed results these results are compared with those of small perturbation methods, which show good agreement between them.

Analysis of a Microstrip Substrate-Mounted Dielectric Resonator using FDTD Method and Pade Approximation (FDTD법과 Pade 근사법을 이용한 마이크로 스트립 기판 위의 유전체 공진기 해석)

  • 오순수
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.37 no.6
    • /
    • pp.396-396
    • /
    • 2000
  • Three-Dimensional FDTD method is applied to analyze the dielectric resonator coupled with two microstrip lines. We model accurately the curved surface using Noriaki model. The frequency resolution is 106.46 MHz by the conventional FFT However it is not sufficient for determining its resonant frequency. So we introduce the Pad approximation and Stoer-Bulirsch method in order to have the high frequency resolution degree, 1.00 MHz. All results are compared with the measured data. As a result, we acquire the very precise result through the Pad approximation. And sinusoidal wave is applied. From the plot of the electric and magnetic field distribution, it is shown that the resonant mode is $TE_{01{\delta}}$ mode.

Analysis of a Microstrip Substrate-Mounted Dielectric Resonator using FDTD Method and Pad Approximation (FDTD 법과 Pad 근사법을 이용한 마이크로 스트립 기판 위의 유전체 공진기 해석)

  • O, Sun-Su;Yun, Jung-Han;Lee, Seong-Mo;Park, Hyo-Dal
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.37 no.6
    • /
    • pp.36-43
    • /
    • 2000
  • Three-Dimensional FDTD method is applied to analyze the dielectric resonator coupled with two microstrip lines. We model accurately the curved surface using Noriaki model. The frequency resolution is 106.46 MHz by the conventional FFT However it is not sufficient for determining its resonant frequency. So we introduce the Pad approximation and Stoer-Bulirsch method in order to have the high frequency resolution degree, 1.00 MHz. All results are compared with the measured data. As a result, we acquire the very precise result through the Pad approximation. And sinusoidal wave is applied. From the plot of the electric and magnetic field distribution, it is shown that the resonant mode is TE$_{01{\delta}}$ mode.

  • PDF

Surrogate Models and Genetic Algorithm Application to Approximate Optimization of Discrete Design for A60 Class Deck Penetration Piece (A60 급 갑판 관통 관의 이산설계 근사최적화를 위한 대리모델과 유전자 알고리즘 응용)

  • Park, Woo Chang;Song, Chang Yong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.2
    • /
    • pp.377-386
    • /
    • 2021
  • The A60 class deck penetration piece is a fire-resistant system installed on a horizontal compartment to prevent flame spreading and protect lives in fire accidents in ships and offshore plants. This study deals with approximate optimization using discrete variables for the fire resistance design of an A60 class deck penetration piece using different surrogate models and a genetic algorithm. Transient heat transfer analysis was performed to evaluate the fire resistance design of the A60 class deck penetration piece. For the approximate optimization of the piece, the length, diameter, material type, and insulation density were applied to discrete design variables, and temperature, productivity, and cost constraints were considered. The approximate optimum design problem based on the surrogate models was formulated such that the discrete design variables were determined by minimizing the weight of the piece subjected to the constraints. The surrogate models used in the approximate optimization were the response surface model, Kriging model, and radial basis function-based neural network. The approximate optimization results were compared with the actual analysis results in terms of approximate accuracy. The radial basis function-based neural network showed the most accurate optimum design results for the fire resistance design of the A60 class deck penetration piece.

A Comparative Study on Approximate Models and Sensitivity Analysis of Active Type DSF for Offshore Plant Float-over Installation Using Orthogonal Array Experiment (직교배열실험을 이용한 해양플랜트 플로트오버 설치 작업용 능동형 DSF의 민감도해석과 근사모델 비교연구)

  • Kim, Hun-Gwan;Song, Chang Yong
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.3
    • /
    • pp.187-196
    • /
    • 2021
  • The paper deals with comparative study for characteristics of approximation of design space according to various approximate models and sensitivity analysis using orthogonal array experiments in structure design of active type DSF which was developed for float-over installation of offshore plant. This study aims to propose the orthogonal array experiments based design methodology which is able to efficiently explore an optimum design case and to generate the accurate approximate model. Thickness sizes of main structure member were applied to the design factors, and output responses were considered structure weight and strength performances. Quantitative effects on the output responses for each design factor were evaluated using the orthogonal array experiment. Best design case was also identified to improve the structure design with weight minimization. From the orthogonal array experiment results, various approximate models such as response surface model, Kriging model, Chebyshev orthogonal polynomial model, and radial basis function based neural network model were generated. The experiment results from orthogonal array method were validated by the approximate modeling results. It was found that the radial basis function based neural network model among the approximate models was able to approximate the design space of the active type DSF with the highest accuracy.

Electromagnetic Wave Scattering from a Perfectly Conducting Random Rough Surface with Considering the Edge Effect (가장자리 효과가 고려된 임의의 기복을 가진 완전도체 표면에서의 전자파 산란)

  • 최동묵;김채영
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.3B
    • /
    • pp.244-250
    • /
    • 2002
  • In this paper, rile scattered field from a random rough perfectly conducting surface by method of moment(MoM) was computed. A one-dimensional random rough surface predetermined statistical properties was generated by a digital computer. The number of surface realization for the computed field and the width of surface realization are set to be 100, 80 λ, respectively. To eliminate the scattering from the ends of the surface, the Gaussian taper function is used. Using Monte Carlo technique, we calculated hi-static scattering and back scattering coefficient. In order to verify the result by MoM we compare the MoM results with those of Kirchhoff approximations, which show good agreement between them.

First-principles Study on the Magnetism of VRu(001) Surface (VRu(001) 표면의 자성에 대한 제일원리 연구)

  • Jang, Y.R.;Song, Ki-Myung;Lee, J.I.
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.3
    • /
    • pp.109-113
    • /
    • 2007
  • We investigated the magnetic properties of VRu(001) surface by using the all electron full-potenial linearized augmented planewave (FLAPW) energy band method within the GGA. We consider two different configurations, V and Ru surface layers, respectively. The V atoms in surface layer was calculated to have large magnetic moment of $1.71_{{\mu}_B}$ while the Ru surface layer to have nearly nonmagnetic state. The calculated spin-polarized density of states. spin density contour, and charge density were discussed in relation to the magnetic properties of VRu(001) surface.

A Practical Method for Computing Wave Resistance (조파저항 계산을 위한 실용적인 방법)

  • Seung-Joon Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.1
    • /
    • pp.111-120
    • /
    • 1994
  • This is a continuing work of Van & Lee[1]. Some unresolved results of theirs are first discussed more, and then Tulis's[2] exact theory is briefly reviewed. A second order theory derived from Tulin's is used as a basis to judge the accuracy of the Poisson and the Dawson[3] free surface boundary condition(FSBC) in the low speed region for a two-dimensional submerged body. In search of a new FSBC, a purely numerical approach is adopted, and we show one candidate and its performance, which is satisfactory to a certain degree.

  • PDF

FLAP DEFLECTION OPTIMZATION FOR TRANSONIC CRUISE PERFORMANCE IMPROVEMENT OF SUPERSONIC TRANSPORT WING (초음속 날개의 천음속 순항성능 향상을 위한 플랩 꺽임각 최적화)

  • Kim Hyoung-Jin;Obayashi Shigeru;Nakahashi Kazuhiro
    • Journal of computational fluids engineering
    • /
    • v.6 no.2
    • /
    • pp.9-21
    • /
    • 2001
  • 초음속 여객기의 천음속 순항 성능을 개선하기 위하여 날개의 플랩 꺽임각을 최적화하였다. 이를 위하여 3차원 Euler 코드와 adjoint 코드를 이용한 최적설계기법을 적용하였다. 설계변수로서, 앞전플랩 5개, 뒷전 플랩 5개 등 총 10개의 플랩의 꺽임각이 사용되었다. 설계과정중에 격자계 내부격자점의 수정을 위해 타원형방정식법을 이용하였다. 계산 시간의 단축을 위해 내부격자의 민감도는 무시하였다. 또한 본 설계문제에 근사구배기법의 적용가능성 여부를 조사하였다. 충격파가 없는 경우 앞전 플렙에 한하여 근사구배기법을 적용할 수 있음을 알았다. 최적설계기법으로 BFGS기법을 적용하여 항력을 최소화하였으며, 양력 및 날개 표면 마하수에 대한 제약조건을 적용하였다. 앞전 플랩의 최적화 및 앞전과 뒷전 플랩의 최적화 등 두 개의 설계 문제를 고려하였다. 성공적인 결과를 얻음으로써 본 설계방법의 타당성 및 효율성을 확인하였다.

  • PDF

생산공정의 불확실성을 고려한 적층판 결합공정의 최적설계

  • Choe, Ju-Ho;Lee, U-Hyeok;Park, Jeong-Jin
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2006.10a
    • /
    • pp.35-38
    • /
    • 2006
  • 디스플레이 산업에 이용되는 적층판(layered plates)의 결합공정 중 냉각공정에서 열팽창계수의 차이로 인해 잔류응력이 발생하고 심하면 적층판에 크랙(crack)이 발생한다. 본 연구에서는 적층판의 결합공정을 대상으로 현상을 분석하고 이 과정을 시뮬레이션하는 해석 프로그램을 개발하였다. 또한 이를 토대로 향후의 새로운 제품에 대해서도 크랙과 같은 문제점을 최소화 할 수 있는 신뢰성 있는 공정 셋업을 제시하기 위해 차원감소법(dimension reduction method)과 근사화 방법인 반응표면법(response surface method), 순차적 근사최적화 기법(Sequential Approximate Optimization, SAO)을 이용하여 신뢰성기반의 강건최적설계를 하였다.

  • PDF