• Title/Summary/Keyword: 표건상태

Search Result 6, Processing Time 0.019 seconds

A study on the improvable decision of saturated surface dry of fine aggregate (잔골재 표건상태 판정방법 개선에 관한 연구)

  • Song Ji-Heup;Cho Hyun-Dae;Choi Hyun-Soo;Jun Myoung-Hoon;Lee Do-Heun;Jaung Jae-Dong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.153-156
    • /
    • 2005
  • Surface dry condition examination method on the KS F 2504(Testing method for specific gravity and absorption of fine aggregate) has dim detail prescriptions which can cause different ways of understanding based on one's convinence, not on correct means of rule. So we investigate the problems about the inconsistency on decisioing surface dry condition at management examination in the lab and scene. In conclusion, free-falling method is easier and faster than self-weight method. And we also found that the most important face on decisioning surface dry is compacting factor of tamping rod.

  • PDF

Compressive Strength of Concrete due to Moisture Conditions of Recycled Coarse Aggregates and Curing Conditions (순환 굵은 골재의 함수상태와 양생조건에 따른 콘크리트의 압축강도)

  • Moon, Kyoungtae;Park, Sangyeol;Kim, Seungeun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.4
    • /
    • pp.485-492
    • /
    • 2019
  • In this study, the effect of moisture conditions of recycled coarse aggregates on the compressive strength of concrete was evaluated with the water/binder ratios and the curing conditions. The saturated recycled aggregates seemed to have the negative effect on the strength development of concrete. This is the because of the decrease in bond strength between aggregate and cement paste due to the increase of surface water according to the high absorption of recycled aggregates. The effect of types and moisture conditions of aggregates according to the change of water/binder ratio was similar. However, the curing conditions had a significant effect on the compressive strength of the concrete with the different types of aggregates. In the case of curing in air, the recycled aggregates with high absorption reduced the moisture required for hydration and increased the rate of vaporizing, and these result in interfering strength development. The moisture conditions of the recycled aggregates have a considerable effect on the compressive strength of the concrete, and it is necessary to control the moisture conditions of aggregates in the production of concrete with recycled coarse aggregate. And the control of the curing condition is very important for the concrete with recycled aggregate.

Properties of Normal-Strength Mortar Containing Coarsely-Crushed Bottom Ash Considering Standard Particle Size Distribution of Fine Aggregate (잔골재 표준입도를 고려하여 조파쇄 바텀애시를 혼입한 일반강도 모르타르의 성능)

  • Kim, Hyeong-Ki
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.5
    • /
    • pp.531-539
    • /
    • 2015
  • Properties of normal-strength mortar containing coarsely-crushed coal bottom ash considering standard particle size distribution of fine aggregate were investigated. Mortar containing raw bottom ash was applied as a reference. By crushing the bottom ash with a particle size larger than fine binder but smaller than fine aggregates, i.e., coarse-crushing, water absorption and specific gravity of the particles could be controlled as similar levels to those of natural fine aggregates. Workability and strength of the mortar were not changed and even increased when the coarsely-crushed bottom ash was added considering standard particle size distribution in Standard Specification for Concrete, while those were decreased when raw bottom ash was added without any treatment. When a replacement ratio of coarsely-crushed bottom ash was less than 30 vol.%, there were no significant decrease in dynamic modulus of elasticity and dry shrinkage of the mortar.

A Study for Improvement of the Testing Methods for Quality Control of Recycled Aggregate (순환골재의 품질평가를 위한 시험방법 개선에 관한 실험적 연구)

  • Jaung, Jae-Dong;Lee, Do-Heun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.8 no.4
    • /
    • pp.105-114
    • /
    • 2008
  • This study investigates the saturation level of surface dryness, quantity of adhesive mortar, and the alien substance content of recycled aggregates for concrete to develop an adequate quality testing method for understanding the properties of recycled aggregates, which differ greatly from preexisting aggregates. For tests that measure the saturation level of surface dryness, where detail methods are applied differently according to the tester, various testing methods from across world were compared and analyzed. This study revealed that when measuring the saturation level of surface dryness of a certain sample, aggregates must be supplemented immediately whenever the height of the sample becomes lower than the measuring mold, and allowing the tamper to free fall on the sample will provide the most accurate results. When measuring the quantity of adhesive mortar of recycled aggregates for concrete, an acid solution was used, and since the quantity of adhesive mortar increases as the particle sizes gets smaller, the sample for testing should represent the entire granularity. Sulfuric acid solution is adequate for immersion, and the concentration should be 20% for best results. According to the alien substance content measurement, which was examined by the naked eye, the error range caused by the difference in particle size was neglectable, and therefore the sample should be $2.5{\sim}5.0mm$ in size concerning the accuracy and measuring time. Also, for coarse recycled aggregates, the sample should amount to 1kg for measuring alien substance content by the naked eye, which proves that assortment by the naked eye is the most adequate method for measuring the alien substance content of a recycled aggregate.

Study on the Decision of Saturated Surface Dry of Crushed Stone Sand with Very Fine Sand (잔입자함유랑에 따른 부순모래의 표건 상태 판정에 관한 연구)

  • 이성복;최진만;이도헌;전용수;김병환;이현희;지남용
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.10a
    • /
    • pp.10-16
    • /
    • 1996
  • This study is aimed for investigating a decision of the saturated surface dry of crushed stone sand and measuring the moisture with increasing percentage of VFS(Very Fine Sand) replacement each crushed stone sand. The results indicated that moisture of crushed stone sand is generally increased with increasing percentage of VFS replacement and the rate of increase of moisture is about 30% every time that VFS replacement increases 3.5%. Also the saturated surface dry for crushed stone sane is proposed as a point of time where shape of flow-cone first slumps in this paper.

  • PDF

Manufacturing artificial lightweight aggregates using coal bottom ash and its application to the lightweight-concretes (석탄 바닥재를 이용한 인공경량골재의 제조 및 경량 콘크리트에 적용)

  • Kim, Kang-Duk;Kang, Seung-Gu
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.5
    • /
    • pp.211-216
    • /
    • 2008
  • The artificial lightweight aggregate (ALA) was manufactured in a rotary kiln at $1125^{\circ}C$ using green body formed by pelletizing the batch powder composing of coal bottom ash (CBA) produced from power plant, clay and dredged soil (DS). The TCLP (Toxicity characteristic leaching procedure) results showed that the dissolution concentration of heavy metal ions of ALA fabricated in this study was below the limitation defined by the enforcement regulations of wastes management law in Korea. The ALA containing 60$\sim$70 wt% CBA had a bulk density of 1.45$\sim$1.49 and a water absorption of 17.2$\sim$18.5 %. The impact values for oven-dry state and saturated-surface dry state of ALA were 27.4$\pm$1.3 and 23.4$\pm$2.6 % respectively. The 28-days compressive strength of concrete made with various ALA was $22.7\sim27.8 N/mm^2$. The slump of concrete with ALA containing CBA 60 and 70 wt% were 7.9 and 14.3 cm respectively. The unit weight of concrete made with any ALA fabricated in this study was satisfied with the standard specifications of lightweight concrete for the civil engineering and construction presented by Korea as below $1.84 ton/m^3$.