• Title/Summary/Keyword: 폴리-플로우

Search Result 11, Processing Time 0.027 seconds

Preparation and Curing Behavior of Polyurethane Coatings by Polyester/Lactone Polyol and HDI-biuret (폴리에스테르/락톤 폴리올과 HDI-Biuret에 의한 폴리우레탄 도료의 제조 및 경화거동)

  • 최용호;김대원;황규현;박홍수;김태옥
    • Polymer(Korea)
    • /
    • v.24 no.1
    • /
    • pp.72-81
    • /
    • 2000
  • Benzoic acid polyester/lactone polyol were synthesized by polycaprolactone 0201 as diol, trimethylolpropane as triol, adipic acid as dibasic acid, and benzoic acid as monobasic acid. Polyisocyanate prepolymer Desmodur N-100 of HDI-biuret type was used in this study. Two-component polyurethane coatings were prepared by blending benzoic acid polyester/polycaprolactone, polyisocyanate, wetting/dispersing agent, white pigment, and flowing agent. Various properties were examined on the film coated with the prepared polyurethane. They showed excellent physical properties such as abrasion resistance, accelerated weathering resistance, and yellowness index. They also showed good physical properties such as flexibility, impact resistance, 60$^{\circ}$ specular gloss, cross hatch adhesion, hydrocarbon resistance, and lightness index difference. Hardness of coating showed a little poor character. The introduction of polycaprolactone 0201 as diol in the polyurethane coatings improved the hydrocarbon resistance, impact resistance, and flexibility of coatings. According to the drying and curing behavior with the contents of benzoic acid, they seem to have reasonable coating properties such as drying time of 2 to 4 hours and pot-life time of 20 to 37 hours.

  • PDF

A Study on Air-flow Dyeing Machines ―A Comparision of Characteristics of the Polyester F fabrics Dyed with Green-flow Dyeing M/C and Luft-roto Dyeing M/C― (에어―플로우 염색기에 관한 연구(I) ―그린 플로우와 루프트―로토 염색기의 폴리에스테르 염색결과 비교―)

  • Seo, Mal Yong;Lee, Suk Young;Lee, Kwang Su;Kim, Hyun Kuk;Lee, Young Il
    • Textile Coloration and Finishing
    • /
    • v.7 no.4
    • /
    • pp.1-7
    • /
    • 1995
  • A new dyeing M/C, called Green-flow was developed in this study. A new M/C was applied to mixed air flow method combined aerodynamic technology to fabric speed power. The polyester fabric was dyed of beige color with a new M/C and Luft-roto dyeing M/C made by Thies Company(German) with the same dyeing condition (liquor ratio=1 : 3.5, Fabric speed = 450yds/min.) for comparision. The results showed that the color fastness to dye and drapability of the fabrics dyed with both M/C were almost the same and the levelness and T.H.V of the fabrics dyed with Greenflow were better than those dyed with Luft-roto M/C. In addition, it is found that the fabric speed of 502yds/min was a suitable for both M/C.

  • PDF

The Performance of Concrete Used High Strength Development Polycarboxylate Superplasticizer (고강도용 폴리카르본산계 고성능 감수제가 사용된 콘크리트의 성능)

  • Lee, Wan-Jo;Kang, Sung-Gu;Hwang, In-Dong;Lee, Jae-Yong;Park, Sung;Chug, Yun-Joong
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.3 s.274
    • /
    • pp.182-187
    • /
    • 2005
  • There are many kinds of polycarboxylate superplasticizer as a functional classification which are introduced to domestic; Water Reducer, Retention, Ultra High Strength Superplasicizer. These are showed different physical behaviors because of the difference in the chemical system and the manners after cement mixing. In the case of water reducer, when $1.2\% of cement weight used, water reducing which is over $30\% is observed, but it take with segregation and the reduction of slump flow shows over 30 cm after 45 min of concrete produce. In the case of retention, when the same quantity used, water reducing which is about $25\% is observed and slump flow which is up to 45 min shows under 15 cm. And in the case of ultra high strength, when $1.2\% of cement weight used, water reducing which is over $30\% is observed, and slump flow which is up to 45 min recorded fewer than 15 cm. Compressive strength of ultra high strength superplasticizer has take effect of early age strength, and in the condition of specific mixing, 18 h-compressive strength is insured for more than $60\;Kgf/cm^2$ and 24 h-compressive strength is insured for more than $80\;Kgf/cm^2$.

Mock-up Test for Field Application of a Polylon Fiber Method (폴리론 화이버 공법의 현장적용을 위한 Mock-up Test)

  • Kwon, Hae-Won;Son, Ho-Jung;Jee, Suk-Won;Lee, Byeong-Hoon;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.405-408
    • /
    • 2008
  • This study, as mock-up test for applying Polylon Fiber engineering method to the field, analyzed the fundamental characteristics and the fireproof characteristics of high strength concrete mixed with Polylon Fiber 0.05% and the results are summarized as followings. From the characteristic of the fresh concrete, both slump flow and air content were appeared to satisfy target range. And from the characteristic of hardened concrete, all compressive strengths according to the curing conditions were appeared to satisfy design standard strength of 60 MPa. From the fireproof characteristic, small scaling and spalling phenomenon were partially appeared on the surface part of specimens, but generally the excellent fireproof capacities were appeared. From the characteristic of temperature hysteresis, the highest temperature and the average temperature of reinforcing part after fire-resistant test for 3 hours were $531^{\circ}C$ and $405{\circ}C$, respectively and then satisfied fireproof standard of the Ministry of Land Transportation and Maritime Affairs.

  • PDF

초미세 발포 압출 다이 설계를 위한 압력 해석

  • 이보형;차성운
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.101-101
    • /
    • 2004
  • 초미세 발포 플라스틱(MCPs; Microcellular Plastics)공정은 기존 발포 플라스틱의 장점을 보존하면서도 그 동안 발포 플라스틱의 단점으로 지적되어온 충격강도, 인성, 경도 등의 기계적 특성저하를 개선하기 위하여 개발되었다. 플라스틱 내에 지름 수 십 $\mu\textrm{m}$ 내외의 기포를 $10^{9}$-$10^{15}$cel1/㎤의 밀도로 발생시키는 초미세 발포공법은 내부의 미세 구조로 인하여 재료비를 절약하면서 우수한 기계적 특성을 나타내는 플라스틱 재료를 성형할 수 있게 하며, 발포제로 초 임계 상태의 불활성 기체($CO_2$, $N_2$, etc)를 사용하기 때문에 기존의 발포 공정에서 발포제로 사용했던 유해 화학 물이나 프레온, 부탄으로 인해 발생할 수 있는 환경 문제를 해결할 수 있다는 장점을 지닌다.(중략)

  • PDF

A Study on the Strength at an Early Stage of the Compound Mixed into Polycarboxylate (Polycarboxylate에 혼합 사용된 혼화제의 조기강도 발현성상에 관한 연구)

  • Ryu, Hyun-Gi
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.6
    • /
    • pp.175-181
    • /
    • 2009
  • In this research, experiments were conducted to find out whether polycarboxylate could be used as a crude steel admixture for practical work, depending on the change in the replacement level of the compound mixed into polycarboxylate. Its fluidity was satisfactory, its airspace was a bit smaller than the KS standard, and its unit volume weight was proven to meet the standard. The amount of bleeding was smallest in B2, and in terms of the solidification time, the first and the last solidification was faster in A1, B1, and C1. With regard to the compressive strength in early days as acharacteristic of hardened concrete, all addition rates of 7-day C2 displayed the highest strength value, among which the addition rate of 1.3% had the biggest strength performance tendency. The seal strength also showed the strength performance rate which was about one tenth as big as that of the compressive strength. The length change rate resulting from dryness and contraction was proven to be good, and once the appropriate AE air entraining agent is used, it is evaluated to be a very useful and practical compound out in the field.

Study of the Fall Detection System Applying the Parameters Claculated from the 3-axis Acceleration Sensor to Long Short-term Memory (3축 가속 센서의 가공 파라미터를 장단기 메모리에 적용한 낙상감지 시스템 연구)

  • Jeong, Seung Su;Kim, Nam Ho;Yu, Yun Seop
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.391-393
    • /
    • 2021
  • In this paper, we introduce a long short-term memory (LSTM)-based fall detection system using TensorFlow that can detect falls occurring in the elderly in daily living. 3-axis accelerometer data are aggregated for fall detection, and then three types of parameter are calculated. 4 types of activity of daily living (ADL) and 3 types of fall situation patterns are classified. The parameterized data applied to LSTM. Learning proceeds until the Loss value becomes 0.5 or less. The results are calculated for each parameter θ, SVM, and GSVM. The best result was GSVM, which showed Sensitivity 98.75%, Specificity 99.68%, and Accuracy 99.28%.

  • PDF

An Experimental Study on Pumpability Characteristics of High Strength Concrete Mixed Polymix (폴리믹스 혼입 고강도 콘크리트의 펌프압송 성상에 관한 실험적 연구)

  • Lee, Joo-Ho;Moon, Hyung-Jae;Kim, Jeong-Jin
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.5
    • /
    • pp.509-516
    • /
    • 2012
  • The aims of this research is to develop a fire resistant admixture to enhance high-pressured pumping of high-strength concrete (HSC) with a compressive strength of 60~80 MPa. Generally, the efficiency of HSC high-pressured pumping is dramatically reduced due to entanglement of short fibers added to prevent fire spalling. Therefore, the fire resistant admixture that can facilitate pumping of fire resistant HSC is urgently needed presently. The fire resistant HSC mix is comprised of Polypropylene fiber, Nylon fiber and Polymer powder. The test results showed that the slump-flow was improved by approximately 70% of the HSC without fire resistant admixture. However, the air void content was increased slightly due to the addition. The standard design compressive strength at 28-days was satisfied, while its flexural strength was similar to the concrete without the admixture. Since the flexural strength was 12~15% of its compressive strength, the general trend of flexural to compressive strength ratio in normal concrete was maintained. Even though its elastic modulus was decreased by adding the admixture, the study results showed that the concrete can be used for construction since all of the test results exceeded the code requirements.

Microstructure and Properties of Mortar Containing Synthetic Resin using Image Analysis (이미지 분석을 활용한 합성수지 혼입 모르타르의 특성 및 미세구조 분석)

  • Lee, Binna;Min, Jiyoung;Lee, Jong-Suk;Lee, Jang-Hwa
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.1
    • /
    • pp.59-65
    • /
    • 2016
  • Commercial synthetic resins with great amount of hydrogen atoms were investigated for neutron shielding aggregates. Total three types of resins were considered in this study: high density polyethylene (HDPE), polypropylene (PP), and ultra molecular weight polyethylene (UPE). When these resins replaced 20, 40, 60 vol% of fine aggregates, mechanical properties were first evaluated including compressive and tensile strengths, and then image/microstructure analyses such as cross-section analysis, SEM, and X-ray CT were performed. The results showed that the compressive and tensile strengths decreased with the increase of replacement ratio of HDPE and PP, which was found through image analysis that it was closely related to the distribution of resins at the failure surface of test specimens. The strength reduction of UPE was quite small compared to HDPE and PP but it abruptly increased when the replacement level exceeded 60 vol%. The results of microstructure analyses indicated that the replacement level significantly affected the amount of air void so that it is critical to determine the reasonable amount of UPE to make cementitous materials for neutron shielding.

The Effect of the Amount of Polycarboxylate Superplasticizer on the Properties of Ultra-High Performance Fiber-Reinforced Concrete (폴리칼본산계 고성능감수제 사용량이 초고성능 섬유보강 콘크리트의 성질에 미치는 영향)

  • Kang, Su-Tae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.1
    • /
    • pp.11-18
    • /
    • 2018
  • As the amount of polycarboxylate superplasticizer varied from 1.2% to 3.0% of the mass of binder, the change in the flowability & rheological properties, and strength of UHPFRC was investigated with experiments. The test results presented that the increase in the amount of superplasticizer was effective in improving the flowability up to 1.8%, but addition more than 1.8% was hardly beneficial for enhancing the flowability and rhelogical properties. Compressive strengths with different amounts of superplasticizer showed that the strength with 1.8% was slightly higher than that of 1.2%, but the amount more than 1.8% caused strength reduction, which was higher as the amount increased. The results in flexural strength according to the amount of superplasticizer showed a similar trend with the results in compressive strength. When the effect of compressive strength and fiber distribution characteristics on the flexural strength was analysed separately, it was found that high amount of superplasticizer caused an effect of fiber distribution in addition to the effect of compressive strength on flexural strength. This effect seems to be closely related to the results of flowability or rheological properties.