• 제목/요약/키워드: 폴리피롤

검색결과 67건 처리시간 0.027초

3D 프린팅 응용을 위한 환원그래핀/폴리피롤 복합체 기반의 전도성 폴리카프로락톤 레진의 개발 (Development of Conductive Polycaprolactone (PCL)-resin based on Reduced Graphene Oxide(rGO)/Polypyrrole (Ppy) composite for 3D-printing application)

  • 정현택;정화용;조영광;김창현;김용렬
    • 한국응용과학기술학회지
    • /
    • 제35권3호
    • /
    • pp.935-939
    • /
    • 2018
  • 3D프린팅 기술은 산업적 응용을 넘어서 기계 설비 및 각종 장비의 부품생산뿐만 아니라 의료, 식품, 패션에 이르기까지 많은 시제품들의 개발 및 연구가 진행되고 있다. 3D 프린팅 기반 기술의 적용사례를 볼 때 정밀도와 제작 속도 측면에서도 다른 산업에 충분이 활용될 수 있는 기술의 개발이 보고되고 있으나, 아직까지는 시제품 위주로 이용되고 있으며, 향후 3D 프린팅 기술은 4차산업혁명과 관련하여 광범위한 분야에서 응용될 수 있는 완성품이나 부품제작에 이용될 것으로 예상된다. 본 연구에서는 탄소나노 재료중 대표적으로 많이 이용되는 환원그래핀 [rGO(reduced graphene oxide)]과 전도성 고분자중 생체 친화적인 특성을 갖는 폴리피롤[Ppy(Polypyrrole)]의 복합체를 생분해성 고분자인 폴리카프로락톤 [PCL(polycaprolactone)]과 혼합하여 3D 프린팅용 전도성 레진을 개발하고자 하였다. 결과로, 폴리피롤과 환원그래핀 각각 5 wt%, 0.75 wt% 에서 최적의 전기적 특성을 나타내었으며, 환원그래핀의 농도에 따른 표면분석에서도 이와 부합하는 결과를 확인 할 수 있었다. 본 연구를 통하여 제조된 전도성 레진은 3D 프린팅 뿐만 아니라, 다른 산업분야의 전자재료에도 적용이 가능할 것으로 사료된다.

전도성 고분자/리그닌 복합소재를 함유한 하이드로젤의 제조 및 센서 응용 (Preparation of Hydrogels Containing Polypyrrole@lignin Hybrids and Application in Sensors)

  • 박선영;박소연;김혜준;임영순;배준원
    • 공업화학
    • /
    • 제31권4호
    • /
    • pp.411-415
    • /
    • 2020
  • 이 논문에서는, 주요한 목질 소재의 하나인 리그닌(lignin)의 표면에 전도성고분자를 코팅한 복합체를 제조하고 이를 하이드로젤(hydrogel)에 도입하여 센서(sensor) 소재로의 활용 가능성을 검증하는 연구를 다루고자 한다. 리그닌 표면에 전도성 고분자인 폴리피롤(polypyrrole)을 중합한 후 성공적인 도입 여부는 적외선(FT-IR) 분광기를 통하여 확인하였고 그 형태는 주사전자현미경을 통하여 분석하였다. 얻어진 폴리피롤@리그닌(PPy@lignin) 복합 소재는 하이드로젤과 혼합하여 전도성을 띄는 하이드로젤을 형성하였다. 이어서, 전기적 측정을 통하여 전도성 여부를 검증하였다. 이 하이드로젤이 센서 소재로 활용될 수 있는지 확인하기 위하여, 여러 가지 용매류 및 용액류를 하이드로젤에 도입하여 센서 신호를 얻었고, 그 유효성 여부를 다양한 보완실험과 교차검증을 통하여 확인하였다. 향후 다양한 후속 연구가 필요하겠지만, 현 연구에서는 폴리피롤@리그닌 복합재를 포함한 하이드로젤이 센서 소재로 활용될 가능성이 충분함을 알 수 있었다.

전도성 고분자-리그닌 복합소재의 전기화학적 특성 분석 (The Electrochemical Characterization of Conducting Polymer-Lignin Composite)

  • 배준원
    • 공업화학
    • /
    • 제33권2호
    • /
    • pp.210-215
    • /
    • 2022
  • 표면의 전하 특성이 다른 두 가지 리그닌을 사용하여 이전 연구에서 제시된 간단한 방법인 용액상 화학적 중합을 이용하여 폴리피롤@리그닌(PPy@lignin) 및 폴리피롤@리그노설포네이트(PPy@lignosulfonate) 복합소재를 제조하였다. 폴리피롤은 두 가지 리그닌 표면에서 각각 성공적으로 중합되었으며, 얻어진 복합소재들은 주사전자현미경, 순환전압 전류법, 임피던스(impedance) 분석법 등을 이용하여 분석하였다. 이러한 결과들을 바탕으로, 리그닌의 종류가 달라도 복합재료들은 성공적으로 제조되는 것을 알 수 있었으며, 전기적 특성도 일정하게 유지되는 것으로 나타났다. 다만, 개별 리그닌의 표면 특성 차이로 나타나는 물성 차이가 존재함을 임피던스 분석으로 판단할 수 있었다. 나아가, 두 가지 복합소재들을 아가로즈(agarose) 젤(gel)에 투입하여 전도성 젤을 형성하고 이 젤들의 특성들을 역시 순환전압전류법으로 살펴보았으며, 전기전도도를 측정하여 제시하였다. 리그닌의 전기절연성에도 불구하고 전도성 젤이 전기전도도를 포함한 전기적 특성을 유지하는 것을 알 수 있었다. 이는 전도성 젤의 활용이 가능하다는 점을 의미한다.

전기화학 증착법에 의해 합성된 폴리옥소메탈레이트/폴리피롤/탄소천 전극의 전기화학적 특성 (Electrochemical Characteristics of Polyoxometalate/Polypyrrole/Carbon Cloth Electrode Synthesized by Electrochemical Deposition Method)

  • 윤조희;최봉길
    • 공업화학
    • /
    • 제27권4호
    • /
    • pp.421-426
    • /
    • 2016
  • 본 연구에서는 폴리옥소메탈레이트(polyoxometalate, POM)가 도핑된 폴리피롤(polypyrrole, Ppy)을 3차원 구조의 탄소천(carbon cloth, CC) 표면 위에 전기화학적 증착법을 이용하여 합성하고 이의 의사커패시터 특성을 순환전압전류법과 정전류 충전-방전법을 사용하여 분석하였다. POM-Ppy의 코팅은 전기화학적 증착 시간에 따라서 얇은 conformal형태의 코팅으로 조절되었다. 제조된 POM-Ppy/CC의 재료 특성은 전자주사현미경과 X-선 분광분석을 사용하여 분석하였다. POM-Ppy/CC의 3차원 나노복합체 구조는 높은 비정전용량($561mF/cm^2$), 고속 충방전(85% 용량 유지율) 및 장수명 특성(97% 용량 유지율)을 나타내었다.

껍질 두께가 다른 폴리아닐린과 폴리피롤 속 빈 구형체 양전극의 전기화학적 성능 (Electrochemical Performance as the Positive Electrode of Polyaniline and Polypyrrole Hollow Sphere with Different Shell Thickness)

  • 윤수련;황승기;조성우;강영구;류광선
    • 공업화학
    • /
    • 제23권2호
    • /
    • pp.131-137
    • /
    • 2012
  • Layer-by-layer 방법을 기초로 기존의 방법보다 간단히 합성된 껍질 두께를 달리한 속이 빈 구형체인 폴리아닐린과 폴리피롤을 리튬이차전지 양극 활물질로 사용하여 껍질 두께에 따른 방전용량에 미친 효과를 조사하였다. 유화중합으로 중합된 음이온계 계면활성제에 의해 표면 개질 된 폴리스타이렌을 지지체로 사용하였다. 아닐린과 피롤의 모노머 양을 각각 다르게 추가하여 합성하여 쉘 두께를 조절하였다. 그 후, 유기용매를 통해 폴리스타이렌을 제거하여 속이 빈 구형체를 제조하였다. 이는 리튬이차전지에서 전해액과의 접촉을 증가시키기 위해 넓은 표면적을 가진 속이 빈 구형체 구조로 제조하고, 분자량 조절이 어렵고 단위부피당 질량이 낮아 용량이 낮은 단점을 가진 고분자를 껍질 두께의 조절로 단점을 보완하고자 하였다. 아닐린 모노머 양을 1.2, 2.4, 3.6, 4.8 및 6.0 mL로 증가시킨 경우 폴리아닐린의 껍질 두께는 30.2, 38.0, 42.2, 48.2 및 52.4 nm이고 피롤 모노머 양이 0.6, 1.2, 2.4 및 3.6 mL일 경우 양극재료는 폴리아닐린의 경우 껍질 두께가 30.2, 42.2 및 52.4 nm 일 때, 10회 후, 방전 용량은 약 ~18, ~29 및 ~62 mAh/g으로 나타났으며, 폴리피롤의 경우 껍질 두께가 16.0, 22.0, 27.0 및 34.0 nm 일 때, 15회 후, 방전용량은 약 ~15, ~36, ~56 및 ~77 mAh/g으로 껍질의 두께가 증가할수록 방전용량 역시 증가하는 것을 알 수 있었다.