• Title/Summary/Keyword: 폴리페놀

Search Result 1,674, Processing Time 0.035 seconds

Anti-inflammatory Activities of Ethanol Extracts of Dried Lettuce (Lactuca sativa L.) (건조 상추 에탄올 추출물의 항염증 활성)

  • Lee, Eun-Joo;Seo, Yu-Mi;Kim, Yong-Hyun;Chung, Chungwook;Sung, Hwa-Jung;Sohn, Ho-Yong;Park, Jong-Yi;Kim, Jong-Sik
    • Journal of Life Science
    • /
    • v.29 no.3
    • /
    • pp.325-331
    • /
    • 2019
  • Lettuce (Lactuca sativa L.) is one of the most popular green leafy vegetables, and it contains various beneficial components including polyphenolic compounds and has been known to possess various biological functions such as anti-microbial, anti-oxidative, and anti-inflammatory activities. In the present study, we prepared ethanol extract of dried lettuce (DLE) and investigated its anti-inflammatory activity. To evaluate the anti-inflammatory activity of DLE, nitric oxide (NO) production was measured in LPS-activated mouse macrophage RAW 264.7 cells. DLE significantly suppressed NO production in these cells without affecting cell viabilities while resveratrol was used as a positive control. DLE dramatically decreased the expression of pro-inflammatory genes such as iNOS and COX-2 at the mRNA and protein levels and reduced the expression of several cytokines including $IL-1{\alpha}$, $IL-1{\beta}$, IL-1F6, $TNF-{\alpha}$, CSF2 and CXCL10. In addition, DLE suppressed phosphorylation of MAPKs and the nuclear translocation of $NF-{\kappa}B$ p65 indicating DLE shows its anti-inflammatory activity via regulating MAPKs pathway and $NF-{\kappa}B$ pathways. And also, DLE reduced the production of reactive oxygen species in a dose-dependent manner. DLE increased HO-1 protein expression, and also increased the nuclear translocation of Nrf2. Overall, our results suggest that lettuce down-regulate various pro-inflammatory genes and have its anti-inflammatory activity via regulating MAPKs, $NF-{\kappa}B$, and Nrf2/HO-1 pathways.

Proanthocyanidins Suppresses Lipopolysaccharide-stimulated Inflammatory Responses via Heme Oxygenase-1 Induction in RAW264.7 Macrophages (프로안토시아니딘의 항염증효과)

  • Cheon, Hye-Jin;Park, Sun Young;Jang, Hee-Ji;Cho, Da-Young;Jung, Jiwon;Park, Gimin;Jeong, Kyeong Mi;Kim, Jin-Kyung
    • Journal of Life Science
    • /
    • v.29 no.4
    • /
    • pp.484-491
    • /
    • 2019
  • Proanthocyanidins are naturally occurring polyphenolic compounds abundant in many vegetables, plant skins (rind/bark), seeds, flowers, fruits, and nuts. Numerous in vitro and in vivo studies have demonstrated myriad effects potentially beneficial to human health, such as antioxidation, immunomodulation, DNA repair, and antitumor activity. Among immune cells, macrophages are crucial players in a variety of inflammatory responses to environmental conditions. However, it has been widely reported that macrophages cause chronic inflammation and are involved in a variety of diseases, such as obesity, diabetes, metabolic syndrome, and cancer. In this study, we report the suppressive effect of proanthocyanidins via the heme oxygenase-1 (HO-1)-related system, on the immune response of the LPS-stimulated mouse macrophage cell line RAW264.7. Increased HO-1 expression at mRNA and protein levels were found in proanthocyanidins-treated RAW264.7 cells. Further, proanthocyanidins enhanced nuclear factor-erythroid 2-related factor 2 translocation into the nucleus. RAW264.7 cells were treated with lipopolysaccharide (LPS) with or without proanthocyanidins, and inflammatory mediator expression levels were assessed. Proanthocyanidins treatment resulted in the attenuation of nitric oxide production and inducible nitric oxide synthase expression in LPS-stimulated RAW264.7 cells. In addition, mRNA and protein expression of proinflammatory cytokines, such as tumor necrosis factor-${\alpha}$ and interleukin-6, was inhibited by proanthocyanidins treatment in LPS-stimulated RAW264.7 cells. These findings support proanthocyanidins as a promising anti-inflammatory agent.

Characterization of compounds and quantitative analysis of oleuropein in commercial olive leaf extracts (상업용 올리브 잎 추출물의 화합물 특성과 이들의 oleuropein 함량 비교분석)

  • Park, Mi Hyeon;Kim, Doo-Young;Arbianto, Alfan Danny;Kim, Jung-Hee;Lee, Seong Mi;Ryu, Hyung Won;Oh, Sei-Ryang
    • Journal of Applied Biological Chemistry
    • /
    • v.64 no.2
    • /
    • pp.113-119
    • /
    • 2021
  • Olive (Olea europaea L.) leaves, a raw material for health functional foods and cosmetics have abundant polyphenols including oleuropein (major bioactive compound) with various biological activities: antioxidant, antibacterial, antiviral, anticancer activity, and inhibit platelet activation. Oleuropein has been reported as skin protectant, antioxidant, anti-ageing, anti-cancer, anti-inflammation, anti-atherogenic, anti-viral, and anti-microbial activity. Despite oleuropein is the important compound in olive leaves, there is still no quantitative approach to reveal oleuropein content in commercial products. Therefore, a validated method of analysis has to develop for oleuropein. In this study, the components and oleuropein content in 10 types of products were analyzed using a developed method with ultra-performance liquid chromatography to quadrupole time-of-flight mass spectrometry, charge of aerosol detector, and photodiode array. The total of 18 compounds including iridoids (1, 3, 4, 14, and 16-18), coumarin (2), phenylethanoids (5, 9, and 11), flavonoids (6-8, 10, 12, and 13), lignan (15), were tentatively identified in the leaves extract based high resolution mass spectrometry data, and the content of oleuropein in each product was almost identical between two detection methods. The oleuropein in three commercial product (A, G, H) was contained more over the suggested content, and it of five products (B, E, H, I, J) were analyzed within 5-10% error range. However, the two products (C, D) were found far lower than suggested contents. This study provides that analytical results of oleuropein could be a potential information for the quality control of leaf extract for a manufactured functional food.

Comparison of Anti-inflammatory, Skin Barrier Improvement, and Anti-aging Efficacy of Eleutherococcus divaricatus var. chiisanensis and various Eleutherococcus Genus Extract (지리산오갈피, 가시오갈피, 오갈피나무, 오가나무 추출물의 항염증, 피부장벽개선, 항노화 효능 비교)

  • Jiwon, Han;Bomi, Nam;Beom seok, Lee;Jin-A, Ko;Jiyoung, Hwang
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.48 no.4
    • /
    • pp.373-383
    • /
    • 2022
  • Inflammation caused by active oxygen and the resulting barrier damage have been consistently pointed out as the cause of wrinkle formation. In this study, effective index ingredient search and efficacy analysis were performed to verify the value of use as a functional cosmetic material related to antioxidant, anti-inflammatory and skin barrier improvement, and anti-aging for extracts of four types of Eleutherococcus divaricatus var. chiisanensis (ED), Eleutherococcus senticosus (EN), Eleutherococcus sessiliflorus (ES), and Eleutherococcus sieboldianus (EI) belonging to the Eleutherococcus genus. To identify the effective index composition, the content of the ingredients was measured by high-performance liquid chromatography. The content of eleutheroside E and chlorogenic acid was the highest in ED among the Eleutherococcus genus. As for anti-oxidant activity, DPPH radical scavenging activity was the highest in ED. In anti-inflammatory effects, ED extracts inhibited nitric oxide generation in inflammatory macrophage cells due to lipopolysaccharide by 40% at 100 ㎍/mL. In the case of IL-6 inhibition, which is known as a pro-inflammatory cytokine, ED showed 41% inhibition at 100 ㎍/mL. In addition, filaggrin and involucrin, which are skin barrier-related factors, were increased by 2.5 times and 1.6 times, respectively, in 100 ㎍/mL of ED extracts, and as for the collagenase, which is a wrinkle-related factor, ED extract showed 29% efficacy at 100 ㎍/mL. Thus, these result suggested that ED extract, among the four Eleutherococcus genus, can be used as a cosmetic ingredient for suppressing inflammation in the skin, reinforcing the skin barrier, and reducing wrinkles.