• Title/Summary/Keyword: 폴리올

Search Result 245, Processing Time 0.029 seconds

Preparation and Properties of Polyurethanes Containing Polycarbonate Polyol/Bio Polyol for Wet Type Artificial Leather (폴리카보네이트 폴리올/바이오 폴리올을 이용한 습식 인조피혁용 폴리우레탄의 제조 및 물성)

  • Sur, Suk-Hun;Ko, Jae-Wang;Choi, Pil-Jun;Lee, Jae-Yeon;Lee, Young-Hee;Kim, Han-Do
    • Clean Technology
    • /
    • v.25 no.2
    • /
    • pp.114-122
    • /
    • 2019
  • The synthesis of bio polyol from renewable resources has attracted attention in recent years. In particular, it is important to take advantage of bio polyols in the synthesis of polymers. In this study, a series of dimethylformamide (DMF) based polyurethanes were synthesized using polycarbonate polyol/bio polyol (PO3G: polytrimethylene ether glycol prepared from 1, 3-propanediol produced by fermentation from corn sugar), methylene diphenyl diisocyanate (MDI) and 1,4-butandiol (BD). The properties of prepared polyurethane films and the cell structure of wet type artificial leather were investigated. As the bio polyol content increased, the tensile strength of polyurethane films decreased, however, the elongation at break increased significantly. As a result of thermal characteristics analysis, the glass transition temperature of polyurethanes increased when increasing the content of polycarbonate polyol. As a result of comparing the cell characteristics of wet type artificial leathers prepared in this study, it was found that the number and uniformity of cells formed in the artificial leather samples increased when increasing the content of polycarbonate polyol in polycarbonate polyol/bio polyol. From these results, it was found that DMF-based polyurethane containing an appropriate amount of bio polyol could be used for wet type artificial leather. The bio textile analysis system according to ASTM standard was used to measure the bio carbon content of polyurethane. The content of bio carbon increased proportionally with the increase of bio polyol content used in polyurethane synthesis.

Comparison of Properties of Waterborne Polyurethanes Containing Various Polyols (다양한 폴리올을 갖는 수분산 폴리우레탄의 특성 비교)

  • Sur, Suk-Hun;Lee, Young-Hee;Park, Cha-Cheol;Kim, Han-Do
    • Clean Technology
    • /
    • v.24 no.3
    • /
    • pp.190-197
    • /
    • 2018
  • Various waterborne polyurethanes (WPU) with three different types of polyol such as ester type polyol [adipic acid (A)/BD/3-methyl-1,5-pentandiol (MPD) and A/BD]//carbonate type polyol (C/HD/MPD, C/HD, C/BD)//ether type polyol (PTMG) were prepared in this study. This study focused on the effect of polyol type on the properties of WPU. Soft segment Tg (Tgs), 100% elastic modulus and tensile strength were highest when using carbonate polyol, followed by ester polyol and ether polyol, while those of elongation showed the opposite trend. The WPU synthesized with MPD - containing polyol showed lower Tgs, 100% elasticity and strength, and higher elongation than MPD - free WPU. The % transmittance and transparency of the WPU film containing the MPD component was superior to that of the WPU film containing no MPD component, and it was found that the film based on carbonate polyol was slightly better than the film based on ester polyol and ether polyol.

The Reactivity of Different Polyols for Paint to Polyisocyanate (도료용 폴리올 종류에 따른 폴리이소시아네이트와의 반응성)

  • Seo, Seok-Hwan;Suh, Cha-Soo;Park, Jin-Hwan
    • Applied Chemistry for Engineering
    • /
    • v.19 no.4
    • /
    • pp.388-396
    • /
    • 2008
  • 2 Components polyurethane coatings are widely used for the industrial coating in general because of its excellent film performance and the workability which were brought by the 3 dimensional cross linked chain structures being formed after the reaction between polyol and polyisocyanate. 2 components polyurethane can be classified into alkyd polyol, polyester polyol, acrylic polyol and polyester modified acrylic polyol depending on where it is used. This research was conducted under the conditions below; different chemical compositions of resin for paint, set the same conditions of viscosity, thinner and acid value, set alternative polyols, OH values and catalysts, set alternative polyisocyanate hardeners of the paint, measure the reaction rates and dynamic mechanical characteristics using RPT-3000, Rotation Rheometer, DMA and FTIR. The research found that the reactivity between polyol and isocyanate influences the film performance and workability depending on the catalysts, OH values and chemical compositions. We find out that different reaction rate of acrylic polyol and polyester modified acrylic polyol with poly-isocyanate is not influenced on temperature and catalyst. In addition, reaction speed of high hydroxyl content polyol is faster than low hydroxyl equivalent. These results can improve difficult working condition to apply urethane coating.

A Study on the Bio-Based Polyurethane (바이오 폴리우레탄에 관한 연구)

  • Ko, Jong-Sung;Lee, Jin-Hui;Sung, Ki-Chun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.3
    • /
    • pp.531-542
    • /
    • 2012
  • The thesis covers the trend of research on bio-based polyurethane which is made from polyols derived mainly from plant oils and isocyanates. Castor oil is a triglyceride of ricinoleic acid containing hydroxyl group. Hydroxylation is done on the unsaturated bonds of the oils by the reactions of epoxidation/ring opening, hydroformylation/hydrogenation, ozonolysis/hydrogenation, and thiol-ene reaction. Polyols from hyperbranch, primary alcohol, polysaccharide have been studied to control the reactivity of the polyol and morphology of the microdomains. Besides, researches cover biodegradable polylactic acid polyol for medical use, fatty acid dimer polyol for the prevention of hydrolysis, and polyol with ionic group for water-borne polyurethane. Bio-based polyurethanes are being used in flexible and rigid foams, coatings, sealants, and elastomers.

The Properties of Different Polyols for Paint to Polyisocyanate (도료용 폴리올 종류에 따른 폴리이소시아네이트와의 물성)

  • Seo, Seok-Hwan;Suh, Cha-Soo;Park, Jin-Hwan
    • Applied Chemistry for Engineering
    • /
    • v.19 no.5
    • /
    • pp.547-553
    • /
    • 2008
  • To achieve the ideal performances of paint film, resins and hardeners have to be chosen and designed in a proper way depending on the exposure circumstance of substrate and the requested physical properties. Six different kinds of clear paints were made in this experiment using alkyd polyol, polyester polyol, polyester modified acrylic polyol and another 3 acrylic polyol resins whose $T_g$ and OH value were partially modified. Then the tests for chemical, physical, and mechanical properties were measured after forming the paint films using aliphatic and aromatic polyisocyanate. The viscosity and elasticity of paint film were then measured in terms of gel point and $tan{\delta}$ using Rheometer and DMA. Through this viscoelastic characteristic test of polyurethane resin, we were able to choose the adequate resins and hardeners which are the most important in the top and primer painting system of urethane paint and, as a result of observing the physical, mechanical, and chemical properties of paint film by urethane, we have finally reached the conclusion that we could apply the proper polyol to top and primer paint for developing the polyurethane paint system.

Synthesis and Comparison of Properties of Waterborne Polyurethanes Using Polyols Containing 3-Methyl-1,5-Pentanediol (MPD) (3-Methyl-1,5-Pentanediol (MPD)을 함유한 폴리올을 이용한 수분산 폴리우레탄의 합성 및 특성 비교)

  • Kim, Na-Young;Sur, Suk-Hun
    • Journal of Adhesion and Interface
    • /
    • v.22 no.2
    • /
    • pp.39-46
    • /
    • 2021
  • Waterborne polyurethanes (WPU) was synthesized using polyester polyol and polycarbonate polyol containing 3-Methyl-1,5-pentanediol (MPD) in a branched structure. To compare physical properties, WPUs were synthesized using polyester polyol obtained from 1,4-butanediol (BD) and adipic acid and polycarbonate polyol obtained from 1,6-hexane diol (HD)/ 1,4-butanediol (BD). This study investigated the effect of polyol molecular structure (molecular structure in soft segments) on the physical properties of WPUs. In the case of WPUs synthesized using polyols containing MPD, 100% modulus and tensile strength were lower than that without MPD, and elongation was higher. The transparency of WPU films with MPD were slightly better than WPU films without MPD.

Preparation and Properties of DMF-Based Polyurethanes Containing Bio-Polyol/Ester-Polyol for Wet-Type Polyurethane Artificial Leather (습식 인조피혁용 바이오 폴리올/폴리에스터 폴리올을 함유한 DMF 기반 폴리우레탄의 제조 및 물성)

  • Sur, Suk-Hun;Choi, Pil-Jun;Ko, Jae-Wang;Park, Ji-Hyeon;Lee, Jae-Yeon;Lee, Young-Hee;Kim, Han-Do
    • Clean Technology
    • /
    • v.25 no.1
    • /
    • pp.7-13
    • /
    • 2019
  • Recently, attention has been paid to obtaining bio-polyols from renewable resources. Successful use of these natural ingredients successfully produced in the industry for the synthesis of various polyurethanes is a very important task. In this study, a series of dimethylformamide (DMF) based polyurethanes were synthesized from methylene diphenyl diisocyanate (MDI)/1, 4-butanediol and bio-polyol (polytrimethylene ether glycol based on 1, 3-propanediol : B-POL)/polyester polyol (polyadipate diol based on 1,4-butandiol : H-PET). The effect of different ratio of bio-polyol (B-POL)/polyester polyol (H-PET) on the physical properties of polyurethane was investigated. As the B-POL content in B-POL/H-PET mixture increased, the glass transition of soft segment (Tgs) and tensile strength of polyurethane decreased, however, the elongation at break and tear strength increased. On the other hand, artificial leather was produced by wet process using synthesized DMF-based polyurethanes. It was found that there was almost no difference in the effect of the B-POL/H-PET composition on the average size and density (the number of cells per unit volume) of the porous cells formed in artificial leather. These results show that there is no problem in using bio-polyol (B-POL) based polyurethane for artificial leather produced by wet process.

Study on Type of Different Polyols for Physical Properties of Polyurethane Foam Under Sea Water (해수에서 폴리올 종류가 폴리우레탄 폼의 물성에 미치는 영향)

  • Kim, Sang-Bum
    • Elastomers and Composites
    • /
    • v.46 no.2
    • /
    • pp.158-163
    • /
    • 2011
  • Rigid polyurethane foam (PUF) was synthesized with different contents of aliphatic polyester polyol, aromatic polyester polyol and aliphatic polyether polyol to know change of properties under sea water. UTM(universal testing machine), DSC(differential scanning calorimetry), hardness meter and FT-IR(Fourier transform spectroscopy) were used to study the PUF`s physical properties under sea water. Compressive strength and hardness of PUF decreased with increasing the content of aromatic polyester polyol under sea water as aging. According to the results of IR spectral analysis, reduction of urethane and urea peak was found and allophanate and biuret peak increased. Although glass transition temperature of PUF increased, mechanical properties of PUF decreased under sea water, because PUF gets brittle when crosslink density increase.

Synthesis of Polyols Based on Castor Oil with Maleic Anhydride and Aminoalcohol Derivatives for Polyurethanes (폴리우레탄 제조를 위한 무수말레산과 아미노알콜을 이용한 피마자유 기반의 폴리올 합성)

  • Jung, Sung-Gil;Jeong, Jae-Hyeok;Kim, Sang-Wook;Kwon, O-Pil
    • Clean Technology
    • /
    • v.17 no.3
    • /
    • pp.238-243
    • /
    • 2011
  • We investigate new polyols based on castor oil for polyurethane. In order to introduce primary alcohol groups, which exhibit higher reactivity with isocyanate than secondary alcohol groups, the secondary alcohol groups on castor oil were modified with maleic anhydride and aminoalcohol derivatives ($H_2N$-R-OH). The reactions with various molar ratio of castor oil and maleic anhydride were done at relatively low reaction temperature in the absence of catalyst. The polyols based on castor oil with flexible side-chains exhibit better miscibility with conventional synthetic polyols.

Effect of Polyester Polyol and NCO Index to the Physical Properties of Polyurethane Adhesives in Cryogenic and Room Temperature (폴리올의 구조와 NCO Index에 따른 폴리우레탄 접착제의 상온과 초저온에서의 물성 변화)

  • Kim, Sang-Bum;Cho, Il-Sung;Kang, Sung-Gu
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.3
    • /
    • pp.38-42
    • /
    • 2008
  • Effect of polyol structure and NCO index on adhesion of PU adhesive at room ($25^{\circ}C$) and extremely low temperature ($-190^{\circ}C$) was investigated. At room temperature adhesive strength of PU adhesive tends to decrease as molecular weight of polyol increases, however, the strength at $-190^{\circ}C$ shows opposite tendency. Adhesive strength of the PU turned out to be directly proportional to the amount of MDI. PU containing aliphatic polyol was higher in shear strength at $-190^{\circ}C$ and the strength of PU with aromatic polyol was higher at room temperature.

  • PDF