• Title/Summary/Keyword: 폴리에틸렌 피복된 전선

Search Result 6, Processing Time 0.019 seconds

Experimental Study on the Effects of AC Electric Fields on Flame Spreading over Polyethylene-insulated Electric-Wire (폴리에틸렌으로 피복된 전선화염의 전파에 교류전기장이 미치는 영향에 관한 실험적 연구)

  • Jin, Young-Kyu;Kim, Min-Kuk;Park, Jeong;Chung, Suk-Ho;Kim, Tae-Hyung;Park, Jong-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.11
    • /
    • pp.1015-1025
    • /
    • 2010
  • In this present study, we experimentally investigated the effects of electric fields on the characteristics of flames spreading over electric-wires with AC fields. The dependence of the rate at which a flame spreads over polyethylene-insulated wires on the frequency and amplitude of the applied AC electric field was examined. The spreading of the flame can be categorized into linear spreading and non-linearly accelerated spreading of flame. This categorization is based on the axial distribution of the field strength of the applied electric field. The rate at which the flame spreads is highly dependent on the inclined direction of the wire fire. It could be possible to explain the spreading of the flame on the basis of thermal balance.

Flame Spread Behavior near the End of Wire over Electrical-wire with Applied AC Electric Fields. (교류전기장이 인가된 전선위에서 전선 끝단 근처의 화염전파 거동)

  • Hwang, Sang Seok;Kim, Min Kuk;Park, Jeong;Chung, Suk Ho;Kwon, Oh Boong
    • 한국연소학회:학술대회논문집
    • /
    • 2012.04a
    • /
    • pp.249-252
    • /
    • 2012
  • Experiments have been conducted to clarify flame spread behavior over electrical wire near the end of wire with applied AC electric fields. It is seen that the flame spread behavior near the end of wire with applied AC electric fields are quite different from that in temporally linearly-increasing flame position. The flame spread behavior can be categorized into three regimes based on the relevance of flame shape and the slanted direction of spread flame to spread rate. Detailed explanations on the characteristics are made through thermal balance mechanism. Also, the effect of drop of molten PE and fuel vapor-jet in flame spread is also discussed.

  • PDF

Effect of Applied DC Electric Fields in Flame Spread over Polyethylene-Coated Electrical Wire (폴리에틸렌 피복전선 화염의 전파에 영향을 미치는 직류전기장의 인가 효과에 관한 실험적 연구)

  • Jin, Young-Kyu;Kim, Min-Kuk;Park, Jeong;Chung, Suk-Ho;Yun, Jin-Han;Keel, Sang-In
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.3
    • /
    • pp.321-330
    • /
    • 2011
  • We experimentally investigated the effect of applied DC electric fields on the flame spread over polyethylene-coated electrical wire. The flame-spread rates over electrical wire with negative and positive DC electric fields from 0 to ${\pm}7$ kV were measured and analyzed. We compared the results for DC electric fields with previous results for AC electric fields. We explored whether or not various flame shapes could be obtained with DC electric fields and the main reason for the flame-spread acceleration, particularly at the end of the electrical wire, for AC electric fields. We found that DC electric fields do not significantly affect the flame-spread rates. However, the flame shape is mildly altered by the ionic wind effect even for DC electric fields. The flame-spread rate is relevant to the flame shape and the slanted direction in spite of the mild impact. A possible explanation for the flame spread is given by a thermal-balance mechanism and fuel-vapor jet.

Experimental Study on Spreading Flame over Slanted Polyethylene Insulated Electrical Wire with AC Electric Field (전기장이 인가된 상태에서 폴리에틸렌으로 피복된 기울어진 전선을 통해 전파하는 화염에 대한 실험적 연구)

  • Lim, Seungjae;Kim, Minkuk;Park, Jeong;Chung, Sukho;Fujita, Osamu
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.187-190
    • /
    • 2014
  • An experimental study on downwardly and upwardly spreading flames over slanted electrical wire, which is insulated by Polyethylene(PE), was conducted with applied AC electric field. The result showed that downwardly and upwardly spreading flames with angle of inclination leaned toward burnt side and unburned side, respectively. With applied AC electric fields, size of downwardly spreading flame decreased slightly and that of upwardly spreading flame increased significantly. Flame spread rate showed various trends in terms of inclination, applied voltage and frequency.

  • PDF

Experimental Study on Effect of AC Electric Field on Upwardly Spreading Flame over Polyethylene insulated Electrical Wire (폴리에틸렌으로 피복된 전선을 통해 위로 전파하는 화염에 대한 교류전기장 효과에 대한 실험적 연구)

  • Lim, Seungjae;Kim, Minkuk;Park, Jeong;Chung, Sukho;Fujita, Osamu
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.363-365
    • /
    • 2014
  • An experimental study on effect of AC electric field on upwardly spreading flame over electrical wire, which is insulated by Polyethylene(PE), was conducted. The result showed that upwardly spreading flame leaned toward unburned side with angle of inclination. With applied electric field, size of upwardly spreading flame increased significantly. Flame spread rate showed various trends with inclination, applied voltage and frequency.

  • PDF

Experimental Study on Downwardly Spreading Flame over Inclined Polyethylene-insulated Electrical Wire with Applied AC Electric Fields (교류전기장이 인가된 폴리에틸렌으로 피복된 기울어진 전선을 통해 하향으로 전파하는 화염에 대한 실험적 연구)

  • Lim, Seung Jae;Park, Jeong;Kim, Min Kuk;Chung, Suk Ho;Osamu, Fujita
    • Journal of the Korean Society of Combustion
    • /
    • v.19 no.4
    • /
    • pp.1-7
    • /
    • 2014
  • An experimental study on downwardly spreading flame over slanted electrical wire, which is insulated by Polyethylene (PE), was conducted with applied AC electric fields. The result showed that the flame spread rate decreased initially with increase in inclination angle of wire and then became nearly constant. The flame shape was modified significantly with applied AC electric field due to the effect of ionic wind. Such a variation in flame spread rate could be explained by a thermal balance mechanism, depending on flame shape and slanted direction of flame. Extinction of the spreading flame was not related to angle of inclination, and was described well by a functional dependency upon the frequency and voltage at extinction.