• 제목/요약/키워드: 폴리에틸렌필름

Search Result 161, Processing Time 0.021 seconds

Mechanical properties of carrageenan-based biopolymer films (카라기난 생고분자 필름의 기계적 물성에 관한 연구)

  • Park, Hyun-Jin;Rhim, Jong-Whan;Jung, Soon-Teck;Kang, Seong-Gook;Hwang, Keum-Taek;Park, Yang-Kyun
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.1 no.1
    • /
    • pp.38-50
    • /
    • 1995
  • Tensile strength (TS) of ${\kappa}-carrageenan$ films without salt was 22-32 MPa and was the highest among ${\kappa},\;{\lambda}\;and\;{\iota}-carrageenan$ films. ${\kappa}-carrageenan$ films had high mechanical barrier properties as they are compared with TS of polyethylene films which are 13-28 MPa. TS of ${\iota}-carrageenan$ films without salt was 5-9 MPa and was the lowest among the films. Mechanical properties (TS and elongation) were affected by the concentration of plasticizers. Especially, elongation of ${\kappa}-carrageenan\;and\;{\iota}-carrageenan$ drastically increased as the concentration of plasticizer increased. Mechanical properties (TS and elongation) were greatly affected by various concentration and kind of salts. TS of Film-A (0.375 g plasticizer/g carrageenan) of ${\kappa}-carrageenan$ films which contains 0.1% (w/w) potassium chloride increased to 45 MPa which was the highest among the TS of biopolymer films which have been developed.

  • PDF

Adhesion Performance of Plywoods Prepared with Different Layering Methods of Thermoplastic Resin Films (열가소성수지 필름의 적층방법에 따른 합판의 접착성능)

  • Kang, Eunchang;Lee, Sang-Min;Park, Jong-Young
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.5
    • /
    • pp.559-571
    • /
    • 2017
  • This study was conducted to determine the adhesive performances of plywoods affected by layering direction and the amounts of thermoplastic films. The face and back layers of veneer were hardwood species (Mixed light hardwood) and core layer veneer was radiata pine (Pinus radiata D. Don). Thermoplastic film used as adhesive were polypropylene (PP) film and polyethylene (PE) film. Thermal analysis and tensile strength were investigated on each films. As a result, the melting temperature of PP and PE films were $163.4^{\circ}C$ and $109.7^{\circ}C$, respectively, and the crystallization temperature were $98.9^{\circ}C$ and $93.6^{\circ}C$, respectively. Tensile strength and elongation of each films appeared higher on the width direction than length direction. Considering the characteristics of the thermoplastic films, the test for the amount of film used was carried out by layering film to the target thickness on veneer. The effecting of layering direction of film on plywood manufacturing was conducted by laminating in the length and width directions of the film according to the grain direction of veneer. Tensile-shear strength of plywood in wet condition was satisfied with the quality standard (0.7 MPa) of KS F 3101 when the film was used over 0.05 mm of PP film and over 0.10 mm of PE film. Tensile-shear strength of plywood after cyclic boiling exceeded the KS standard when PP film was used 0.20 mm thickness. Furthermore, higher bonding strength was observed on a plywood made with width direction of film according to grain direction of veneer than that of length direction of film. Based on microscopic analysis of the surface and bonding line of plywood, interlocking between veneers by penetration of a thermoplastic film into inner and cracks were observed.

Improvement of Moisture Resistance of Aqueous Slip-Resistant Adhesive on the Polyethylene Film (폴리에틸렌 필름에서의 수용성 미끄럼 방지 접착제의 내습 특성 개선)

  • Yoon, Young Ki;Cho, Kuk Young;Seol, Wan Ho
    • Korean Chemical Engineering Research
    • /
    • v.48 no.2
    • /
    • pp.193-197
    • /
    • 2010
  • Stretch wrapping processes that are used to the packaging process had a serious problem of high price and treatment of used wraps. On the other hand, slip-resistant adhesive provides the advantage of simple process, low cost, and free from after-use treatment. In this research, adhesion deterioration of aqueous slip-resistant adhesive adhered to polyethylene film under the moisture condition using aqueous slip-resistant adhesive was observed by the Peel Test. Improvement of adhesive property under the moisturizing condition could be obtained by the selection of appropriate additives. As a result, introduction of maltodextrin reduced the deterioration of slip-resistant adhesion owing to the improved moisture resistance and introduction amount of 10 wt% of maltodextrin showed optimal performance.

Properties of LDPE Composite Films Using Polyurushiol (YPUOH) for Functional Packaging Applications (폴리우루시올(YPUOH)을 이용한 기능성 패키징용 LDPE 복합필름의 특성분석에 관한 연구)

  • Jung, Suyeon;Kim, Dowan;Seo, Jongchul
    • Applied Chemistry for Engineering
    • /
    • v.26 no.1
    • /
    • pp.23-28
    • /
    • 2015
  • Lacquer sap extracted from lacquer trees exhibits good thermal stabilities and antimicrobial properties. To apply these superior properties to functional packaging, polyurushiol (YPUOH) powders were prepared and blended into LDPE (low density polyethylene) to prepare three different LDPE/YPUOH composite films via a twin screw extruder system. Their morphology, thermal and antimicrobial properties as well as barrier properties of the LDPE/YPUOH composite films were thoroughly investigated to find out applicablities of the films as functional packaging materials. Although the interfacial interaction between LDPE and YPUOH was relatively weak, LDPE/YPUOH composite films exhibited good dispersion of YPUOH in LDPE, resulting in the enhanced thermal stability with YPUOH loading. Due to the good antibacterial property of as-prepared YPUOH, LDPE/YUOH composite films also showed an excellent antibacterial activity (R) of 99.9% against E. coli. Furthermore, the moisture barrier property of LDPE/YPUOH composite films increased with increasing YPUOH contents. Incorporating the relatively low amount of YPUOH in LDPE resulted in the apparent enhancement in thermal stabilities, antibacterial and moisture barrier properties, which made them promising candidates as a functional filler for packaging materials.

Applicability of Volatile Corrosion Inhibitor and VCI Films for Conservation of Artworks (미술작품의 보존을 위한 기화성 방청제 및 방청필름의 적용성 연구)

  • Beom, Dae Geon;Han, Ye Bin
    • Journal of Conservation Science
    • /
    • v.36 no.2
    • /
    • pp.82-92
    • /
    • 2020
  • Modern artworks are constructed using a variety of materials and techniques. Sculptures, which predominantly consist of metals, usually have different shapes and consist of different material mixtures. The structural and material properties of these sculptures are often controlled by conservation treatment methods. However, the application of existing treatment methods is challenging at times, indicating that more diverse treatment materials and techniques are necessary. Therefore, in this study, a treatment method that employs volatile corrosion inhibitor(VCI) powder, rather than an anti-corrosion solution, for the conservation and management of metal artworks was used. VCI powder and VCI films containing VCI powder were used, and the results obtained confirmed that both of them showed anti-corrosion effect. Only a slight change in the chromaticity of metal samples was observed, and compared to the untreated samples, the application of the VCI powder resulted in a decrease in the rate of corrosion by half. Moreover, VCI film tests revealed that comparing to the untreated or polyethylene film-treated samples, VCI film treatment resulted in a decrease in the occurrence of corrosion compounds. The contact angle, surface energy, and surface electrical resistance were measured, and the evaluation of these surface properties established the anti-corrosion effect of VCI. Additionally, direct application of VCI and VCI films on actual sculptures further confirmed the anti-corrosion effect of VCI.

Effect of Different Greenhouse Film on Growth and Yield in Oriental Melon (Cucumis melo L. var makuwa Makino) (시설하우스 필름종류가 참외의 생육 및 수량에 미치는 영향)

  • Shin, Yong-Seub;Yeon, Il-Kweon;Do, Han-Woo;Lee, Ji-Eun;Seo, Young-Jin;Kang, Chan-Ku;Choi, Chung-Don;Chun, Hee;Choi, Young-Ha;Chung, Doo-Seok;Park, Jin-Soon
    • Journal of Bio-Environment Control
    • /
    • v.16 no.4
    • /
    • pp.338-343
    • /
    • 2007
  • This experiment was conducted to improve light environment of oriental melon cultivation in winter season. Three polyolefin (J-1, J-2 and J-3), two polyethylene (K-1 and K-2) films and K-3 commonly used in farmhouses, with different film thickness, ultraviolet ray interception and infrared ray absorption ratio were used. Heat conservation of J-2 was highest, compare to K-3, J-3 and J-1. Early growth of J-1, J-2 and J-3 were faster than K-3, and Days required to harvest of K-3 were shortened about 10 days. Marketable yield of K-3 was 991kg per 10a, those of J-1, J-2, J-3, K-1 and K-2 were increased 21%, 37%, 24%, 13% and 4% compare to K-3, respectively. Especially, harvesting of J-1, J-2, J-3 and K-1 were focused on early (50%) and middle stage (40%). Polyolefin with higher heat conservation improved growth and harvesting in early and shortened days to harvesting in winter season.

Quality Attributes of Fresh-Cut Green Onion as Affected by Rinsing and Packaging (절단 대파의 품질특성에 미치는 세척 및 포장재의 효과)

  • Hong, Seok-In;Jo, Mi-Na;Kim, Dong-Man
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.659-667
    • /
    • 2000
  • Quality attributes of fresh-cut green onion(Allium fistulosum L.) as affected by rinsing and packaging were investigated in terms of flesh weight, color, viable cell counts, sensory properties during storage at $10^{\circ}C$. Fresh green onions were trimmed, cut, and rinsed with cold water(approximately $5^{\circ}C$) as well as chlorine solution(100 mg/L) and then packaged in low density polyethylene film pouches of $63\;{\mu}m$ thickness. Rinsing treatments with cold water or chlorine solution did not significantly influence changes in microbial populations but sensory characteristics, resulting in cut green onions of better visual quality as compared to the control without rinsing. Fresh-cut green onions were also rinsed with cold water and packaged in sealed bags of low density polyethylene films with different thickness(22, 36, $63\;{\mu}m$), and stored at $10^{\circ}C$ for 18 days. Thickness of polyethylene film was a significant factor for microorganisms populations and sensory attributes. Mesophilic aerobic bacterial count after 13 days for the control, packed in punched film bags, was $3.07{\times}10^6}$ CFU/g, while those for samples in hermetically sealed bags ranged only $1.74{\sim}2.02{\times}10^5}$ CFU/g. Gas composition within the sealed packages changed from normal air to about $1.3{\sim}5.4%\;O_2$ and $4.0{\sim}8.0%\;CO_2$ after 13 days of storage. Particularly, the visual sensory quality of cut green onion samples was retained better in polyethylene film bags of $63\;{\mu}m$ thickness(gas transmission rate: 600 $O_2\;mL/day{\cdot}m^2{\cdot}atm;\;2,500\;CO_2\;mL/day{\cdot}m^2{\cdot}atm$) than in the others.

  • PDF

매실의 다양한 이용을 위한 가공 저장 및 포장방법

  • 은종방;김철암;차환수
    • Food preservation and processing industry
    • /
    • v.3 no.1
    • /
    • pp.68-80
    • /
    • 2004
  • 매실을 다양하게 이용하고 부가가치를 높이며 매실의 품질저하 방지 및 이용성 증대를 도모하기 위하여 실시된 지금까지의 매실의 가공, 저장 및 포장 방법에 대한 것을 조사하였다. 매실의 저온저장 시청매실은 $0\~1^{\circ}C$의 저온보다도 $5\~8^{\circ}C$에서 저온 장해가 발생하기가 쉽다고 보고되었다. 이러한 장해를 방지하기 위하여 수확직후에 $0^{\circ}C$정도의 냉수로 급속히 청매실의 품온을 저하시키면 $5\~8^{\circ}C$의 저장에서도 저온장해가 경감되고 추숙도 억제한다고 한다. 상온 CA저장 조건 하에서 청매실의 선도를 유지하기 하는데 대량으로 발생하는 에틸렌의 제거와 저산소($2\%$ 하한), 고이산화탄소($8\%$)의 가스조성이 효과적이라고 보고되었다. 청매실의 저장 중 선도유지를 위하여 청매실을 저밀도폴리에틸렌(LDPE 20${\mu}m$) 필름 봉투에 포장하여 에틸렌 제거제를 넣고 $20^{\circ}C$에 저장한 결과, 에틸렌생성량은 낮은 수준으로 유지되었고 연화에 의한 품질저하가 현저히 억제된는 것을 볼 수 있다. 그리고 MA포장(LDPE 30${\mu}m+$에틸렌제거제)에서도 청매실의 녹색유지 효과가 탁월하였고 이산화탄소 농도가 높을수록 황화가 억제된 것이 연구에 의하여 밝혀졌다. 포장재의 두께를 달리할 때 청매실의 선도유지 효과도 서로 다르게 나타난다고 보고되었다. 청매실을 두께가 다른 필름에 포장, $25^{\circ}C$에서 8일간 저장한 매실은 LDPE 20, 30 필름에 포장한 것이 저장 8일에도 녹색을 그대로 유지한 것을 보아 선도유지 효과가 있음을 알 수 있다. 그리고 중량감소은 LDPE 30, 40이 적게 나타났고 장해정도는 LDPE 20, 30 적게 나타났다. 청매실의 저장 중 선도유지가 가장 양호한 LDPE 30 포장재에 청매실과 함께 탄산가스흡수제, 에틸렌제거제를 각각 또는 혼합첨가하고 밀봉한 후 $25^{\circ}C$에서 10일간 저장한 매실은 에틸렌제거제 첨가한 것이 녹색유지효과와 선도유지효과가 좋았으며 매실의 장해발생도 가장 낮은 것으로 보고되었다. 매실을 이용하여 제조되는 가공식품으로는 매실주, 매실차, 매실 Fruit leather, 매실절임, 고추장장아찌, 매실식초, 매실잼, 매실김치 등이 있다. 앞으로 매실의 이용을 증진시키고 소비를 더욱 촉진시키기 위해서는 매실의 생리학적특성을 이해하여 더욱 효과적인 저장 및 포장방법을 개발하고 생리활성을 이용한 새로운 매실제품의 개발에 대한 연구가 뒤따라야 할 것이다.

  • PDF

Effect of Carbon Filler and Ester Type Binder on the Reactivity and Adhesive Properties with PET Film of Conductive Paste (탄소필러와 에스테르계 바인더가 전도성 페이스트의 반응성 및 PET 필름과의 접착특성에 미치는 영향)

  • Shim, Chang Up;Ku, Hyo Sun;Kim, Youn Cheol
    • Applied Chemistry for Engineering
    • /
    • v.33 no.4
    • /
    • pp.381-385
    • /
    • 2022
  • It is very important to secure the adhesion durability between the base film and the conductive paste for the development of a sensor for detecting hazardous chemicals. In this study, an ester binder was used to improve the adhesive properties which can be a problem when applying the sensor to the cross cut 0B or 1B grade. This problem was found while evaluating the adhesive properties by coating the polyaniline/graphene nano plate (GNP) paste on the polyethylene terephthalate (PET) film. When 10 wt% or more of the ester-based binder was added, the cross cut grade to which the sensor can be applied was 3B or higher. It was confirmed that the excessive addition of the binder may affect the electrical properties of the conductive paste and actually decrease the reactivity to sulfuric acid. To improve the electrical property, a carbon black (CB) content was varied resulting in the optimum electrical property observed at 2 wt% of CB.

Soil Surface Energy Balance and Soil Temperature in Potato Field Mulched with Recycled-Paper and Black Plastic Film (감자밭의 재생종이 및 흑색 플라스틱 필름 멀칭에 따른 지표면 에너지 수지와 토양온도의 변화)

  • 최일선;이변우
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.46 no.3
    • /
    • pp.229-235
    • /
    • 2001
  • The thermal and photometric properties of mulching materials modify the radiation and energy balance on the mulched soil surface and thereby change the soil temperature. The soil surface energy balances and soil temperatures under the mulching treatments of non-mulched control, recycled paper (RPM), and black polyethylene film (BPFM) were compared before and after the establishment of potato canopy. On August 30 in 1998 when potato was not emerged yet and solar radiation was 17.9 MJ $m^{-2}$${day}^{-1}$ , the net radiation of the soil surface was estimated as 10.(1, 2. 4, and 1.3 MJ $m^{-2}$${day}^{-1}$ under the control, BPFM, and RPM, respectively. The sensible and latent heat loss from the soil surface was 9.65 MJ $m^{-2}$${day}^{-1}$ in the control, most of the net radiation being lost through evaporation and convection, whereas it amounted only to 1.39 MJ $m^{-2}$${day}^{-1}$ in BPFM and 1.36 MJ $m^{-2}$${day}^{-1}$ in RPM. Therefore, the soil heat fluxes were 0.36 1.02, and 0.06 MJ m$^{-2}$ day$^{-1}$ under the control, BPFM and RPM, respectively. On September 27 when potato canopy was fully developed, the soil surface net radiation in the control was sharply decreased as compared to that of Aug. 30, whereas the net radiation of the mulched soil surfaces showed little changes. The soil heat flux was -0.01, 0.95, and 0.12 MJ $m^{-2}$${day}^{-1}$ at the soil surface under the control, BPFM and RPM, respectively. As the mulching treatments brought about such alteration of energy partitioning into the soil, the highest soil temperature was recorded in BPFM and the lowest in RMP without regard to potato canopy development. However, the soil temperature differences among the treatments become smaller when potato canopy were fully developed.

  • PDF