• Title/Summary/Keyword: 폴리비닐알코올 젤

Search Result 6, Processing Time 0.017 seconds

Thermomechanical Characteristics of Poly(vinyl alcohol)/Chitosan Films and Its Blend Hydrogels (폴리(비닐 알코올)/키토산 블렌드와 블렌드 수화젤의 열특성)

  • Park Jun Seo;Park Jang Woo;Kim Byung Ho
    • Polymer(Korea)
    • /
    • v.29 no.2
    • /
    • pp.183-189
    • /
    • 2005
  • Films of poly(vinyl alcohol)(PVA)/chitosan blends and its blend hydrogels were prepared by the solution casting method. The state of miscibility of the blends and blend hydrogels were examined over the entire composition range by differential scanning carorimetry (DSC), thermogravimetry (TGA), and dynamic mechanical analysis (DMA). DSC analysis shows the depression of melting point of PVA in the blends and the decrease of crystallization temperature of PVA in the blends were observed with increasing chitosan content in the blends. TGA analysis indicates that chitosan was thermally more stable than PVA and the thermal stability of PVA in the blends was higher than that of pure PVA, due to some interactions between two component polymers in the blend. The glass transition temperature $(T_g)$ of the chitosan and of PVA, measured by DMA, were at 160 and $90^{\circ}C$, respectively. The $T_g$ of the blends was changed with the content of chitosan in the blends. The results of thermal and viscoelastic analysis indicate some miscibility between component polymers in the blend exists. Moisture and cross linking in the blend and blend hydrogel, which strongly change thermal and physical properties of hydrophilic polymers, affected the miscibility of chitosan and PVA to a small extent.

Thermal distribution change in polyvinyl alcohol gel caused by focused ultrasound (폴리비닐알코올 젤의 집속초음파에 의한 온도분포 변화)

  • Kim, Jungsoon;Kim, Moojoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.6
    • /
    • pp.576-584
    • /
    • 2020
  • In order to obtain basic information for using polyvinyl alcohol (PVA) gel as a tissue mimicking phantom for temperature visualization, the temperature change characteristics due to the focused ultrasound were examined for different concentration of PVA. To obtain the basic acoustic characteristics, the speed of sound, the attenuation coefficient, and the density depending on the PVA concentration were measured, and the thermodynamic characteristics, such as thermal conductivity and heat capacity, were measured. The range of temperature rising in the vicinity of the focal point due to the focused ultrasound was observed using a thermochromic film that changes color at 30 degree or more, and the discolored area was obtained by image processing of the recorded image. As the concentration of PVA increases in the given range of 2 wt% ~ 16 wt%, the area that rises above 30 degree inside the gel increases linearly. It is confirmed that the discolored area increases as the power applied to the focused ultrasonic transducer increases. These results showed good agreement with the simulation results using the finite element method.

Preparation of High Molecular Weight Atactic Poly(vinyl alcohol) Hydrogel by Electron Beam Irradiation Technique (전자빔 조사를 이용한 고분자량 혼성배열 폴리(비닐 알코올) 수화젤의 제조)

  • Kim, Kyung-Sik;Lee, Young-Jae;Lyoo, Won-Seok;Noh, Seok-Kyun
    • Polymer(Korea)
    • /
    • v.32 no.6
    • /
    • pp.587-592
    • /
    • 2008
  • High molecular weight poly(vinyl alcohol) (PVA) hydrogel to be expected as a candidate material for the wound-dressing was successfully prepared by electron beam (EB) irradiation. To produce PVA hydrogels with various gel fractions, degrees of swelling in water, gel strengths, and elongations, two different number-average degrees of polymerization [($P_n$)s] of PVA were adapted such as 1700 and 4000, and the PVA solution concentration and irradiation dose of EB were controlled to range of 5 $\sim$ 20% and 30 $\sim$ 100 kGy, respectively. The gel fraction and strength of PV A hydrogel were increased with increasing molecular weight of PVA, solution concentration, and irradiation dose of EB. On the contrary, the degree of swelling and elongation of PVA hydrogel were decreased. The thermal property and crystallinity related to degree of crosslinking of PVA hydrogel were examined by the analyses of differential scanning calorimetry and X-ray diffraction.

Preparation and Characterization of PVAL/PVP/Hexylene Glycol/Chitosan Hydrogels by $\gamma$-Ray ($\gamma$-선을 이용한 PVAL/PVP/헥실렌 글리콜/키토산 수화젤의 제조 및 특성)

  • 최은경;김형일;노영창
    • Polymer(Korea)
    • /
    • v.27 no.4
    • /
    • pp.349-357
    • /
    • 2003
  • Hydrogels for wound dressing from a mixture of poly(vinyl alcohol) (PVAL), poly(N-vinyl pyrrolidone) (PVP), hexylene glycol (HG) and chitosan were made. The hydrogels were obtained by physical crosslinking of freezing and thawing, chemical crosslinking of irradiation, and irradiation after freezing and thawing of mixture solutions. The solid concentration of PVAL/PVP/HG/chitosan was 15 wt%. The concentration of chitosan was 0.3 wt%, and the ratio of PVAL/PVP was 6:4. The concentration of HG was in the range of 1∼5 wt%. The number of repeated freezing and thawing was in the range of 1∼3 times, and gamma irradiation doses were 25, 35 and 50 kGy. The physical properties such as gelation, water absorption and gel strength of hydrogels were examined. Gel content and gel strength decreased as HG concentration increased, whereas degree of swelling increased. Gel content and gel strength increased as irradiation dose and the number of freezing and thawing increased, whereas degree of swelling decreased. The hydrogels were evaluated for the healing effect for animals and for the antibacterial effect.

Study on the Chemical and Radiation Crosslinking of Poly(vinyl alcohol) Hydrogels for an Improvement of Heat Resistance (내열특성 개선을 위한 폴리(비닐 알코올) 수화젤의 화학 가교와 방사선 가교에 관한 연구)

  • Park, Kyoung-Ran;Nho, Young-Chang
    • Polymer(Korea)
    • /
    • v.29 no.1
    • /
    • pp.91-95
    • /
    • 2005
  • The PVA hydrogels were prepared by the chemical and irradiation method to improve the heat resistance of these hydrogels at the high temperature. The physical properties such as the gel content, the degree of swelling and the gel strength for the synthesized hydrogels were examined. Gel content increased as the chemical reaction time and the irradiation dose increased, and gel content of the hydrogels were higher when the two-steps of chemical and irradiation method were used rather than only the chemical method. Gel strength increased as the chemical reaction time increased, and as the irradiation dose decreased. The hydrogels prepared by the chemical reaction for 5 hours and the two-steps had the heat resistance at the high temperature.

Effect of the Position of Azobenzene Moiety on the Light-Driven Anisotropic Actuating Behavior of Polyvinylalcohol Polymer Blend Films (아조벤젠 분자의 사슬 내 위치에 따른 고분자 블렌드 박막의 비등방성 광 변형에 관한 연구)

  • Kim, Hyong-Jun
    • Applied Chemistry for Engineering
    • /
    • v.23 no.1
    • /
    • pp.65-70
    • /
    • 2012
  • Structural changing materials which can induce the physical deformation of materials are interesting research topics with various potential applications. Particularly, light among many driving mechanisms is a non-contact energy source, hence the light-responsive system can be used where non-destructive, local irradiation, and remote control is needed. Here, a mainchain azobenzene polymer is synthesized and its physical and optical properties are observed and compared to that of a polymer having a light-responsive azobenzene moiety on its side chain. Further dispersion onto polyvinylalcohol hydrogel is made and its dual stability and actuation are observed upon UV-visible light irradiation. Extended azobenzene polymer blend films show an anisotropic light-actuation with non-polarized UV light at room temperature. This physical shape change is quite reversible and occurs at lower temperature than that of any other reported systems including liquid crystalline elastomers. It is successfully demonstrated that the simple physical azobenzene/polymer blending has a very good actuation compared to that of LCEs which need an elaborate chemical design and it can be further used in the areas requiring a dimensional shape change.