Study on the Chemical and Radiation Crosslinking of Poly(vinyl alcohol) Hydrogels for an Improvement of Heat Resistance

내열특성 개선을 위한 폴리(비닐 알코올) 수화젤의 화학 가교와 방사선 가교에 관한 연구

  • Park, Kyoung-Ran (Radiation Application Division, Korea Atomic Energy Research Institute) ;
  • Nho, Young-Chang (Radiation Application Division, Korea Atomic Energy Research Institute)
  • 박경란 (한국원자력연구소 방사선이용연구부) ;
  • 노영창 (한국원자력연구소 방사선이용연구부)
  • Published : 2005.01.01

Abstract

The PVA hydrogels were prepared by the chemical and irradiation method to improve the heat resistance of these hydrogels at the high temperature. The physical properties such as the gel content, the degree of swelling and the gel strength for the synthesized hydrogels were examined. Gel content increased as the chemical reaction time and the irradiation dose increased, and gel content of the hydrogels were higher when the two-steps of chemical and irradiation method were used rather than only the chemical method. Gel strength increased as the chemical reaction time increased, and as the irradiation dose decreased. The hydrogels prepared by the chemical reaction for 5 hours and the two-steps had the heat resistance at the high temperature.

화학적 가교와 방사선 가교에 의해 내열특성을 가진 PVA 수화젤을 제조하였다. 제조된 수화젤의 젤화율, 팽윤도와 젤강도 같은 기계적 특성을 측정하였다. 젤화율은 화학적 가교 반응시간과 방사선 조사선량이 증가할수록 증가하였고, 화학적 가교 후에 방사선 가교를 했을 경우에 화학적 가교만 했을 때보다 높은 값을 보였다. 젤강도는 화학적 가교 반응시간이 증가할수록 증가하였고, 방사선 조사선량이 감소할수록 증가하였다. 5시간 화학적 가교만 한수화젤과 화학적 가교 후에 방사선 가교를 한 수화젤이 고온에서의 내열특성이 우수하였다.

Keywords

References

  1. F. H. Silver, and Ch. Doillon, Biocompatibility. Interactions of Biological and Implantable Materials, VCH Publ. Inc., New York, 1989
  2. N. A. Peppas, Hydrogels in Medicine and Pharmacy, Boca Raton, Editor, CRC Press. Inc., Rorida, Vol 1-3 (1986, 1987)
  3. B. D. Rainer, Biomedical Applications of Hydrogels: Review and Critical Appraisal, D. F. Williams, Editor, CRC Press, Boca Raton, p 145 (1981)
  4. V. Kudela, Polymers: Biomaterials and Medical Applications, J. I. Kroschwitz, Editor, John Wiley & Sons, New York, p 228 (1989)
  5. J. M. Rosiak, J. Control. Release, 31, 9 (1994)
  6. K. R. Park and Y. C. Nho, Polymer(Korea), 25, 728 (2001)
  7. Y. C. Nho and K. R. Park, J. Appl. Polym. Sci., 85, 1787 (2002)
  8. K. R. Park and Y. C. Nho, Polymer( Korea), 26, 792 (2002)
  9. K. R. Park and Y. C. Nho, Radiat. Phys. Chem., 67, 361 (2003)
  10. K. R. Park and Y. C. Nho, J. Appl. Polym. Sci., 91, 1612 (2004)
  11. K. Burczak T. Fujisato, M. Hatada, and Y. lkada, Biomaterials, 15, 231 (1994)
  12. M. Nambu, Polym. Applic., 32, 523 (1983)
  13. S. H. Hyon, and Y. lkada, 'Radiation crosslinking of biomedical hydrogels', 6th Symp. on Radiation Chemistry, Balatomszeplak, Hungary, p 657 (1986)
  14. T. Hirai, High Polym.(Japan), 40, 524 (1991)
  15. R. L. Clough and S. W. Shalaby, Radiation effects on polymers, Maple Press. Inc., New York, PA, p 271 (1990)
  16. M. T. Razzak, Zainuddin, Erizal, S. P. Dewi, H. Lely, E. Taty, and Sukirno, Radiat. Phys. Chem., 55, 153 (1999) https://doi.org/10.1016/S0969-806X(98)00320-X
  17. C. Tranquilan-Aranilla, F. Yoshii, A. M. D. Rosa, and K. Makuuchi, Radiat. Phys. Chem., 55, 127 (1999)
  18. L. F. Miranda, A. B. Lugao, L. D. B. Machado, and L. V. Ramanathan, Radiat. Phys. Chem., 55, 709 (1999)
  19. F. Yoshii, K. Makuuchi, D. Darwis, T. Iriawan, M. T. Razzak, and J. M. Rosiak, Radiat. Phys. Chem., 46, 169 (1995) https://doi.org/10.1016/0969-806X(95)00308-K