• Title/Summary/Keyword: 폴리머콘크리트

Search Result 536, Processing Time 0.019 seconds

Drying Shrinkage and Strength Properties of Polymer-Modified Mortars Using Redispersible Polymer Powder (재유화형 폴리머 분말수지 혼입 폴리머-시멘트 모르타르의 건조수축 및 강도특성)

  • Yeon, Kyu-Seok;Joo, Myung-Ki;Jeong, Jung-Ho;Jin, Xing-Qi;Lee, Chi-Won
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.533-536
    • /
    • 2005
  • Drying shrinkage and strength of the redispersible SBR and PAE powder-modified mortars were experimentally investigated. Results of the study that the drying shrinkage rapidly increased until 7 days of age and it was then saturated to the value of about $1\~2\times10^{4}$ after 14 days. It turned out that the polymer-cement ratio exerted more influence on the drying shrinkage than the content of powder shrinkage-reducing agent did. Flexural (compressive) strength of the mortar increased (decreased) as the polymer-cement ratio increased and it was 7$\~$11 (23$\~$39) MPa at 7 days of age. The average (maximum) increasing (decreasing) rate turned out to be about 10 (30) $\%$. As in the drying shrinkage case, the polymer-cement ratio exerted more influence on both flexural and compressive strengths than the content of powder shrinkage agent did.

  • PDF

Durability of Polymer-Modified Mortars Using Redispersible Polymer Powder (재유화형 폴리머 분말을 사용한 폴리머-시멘트 모르타르의 내구성)

  • Yeon, Kyu-Seok;Joo, Myung-Ki;Jeong, Jung-Ho;Jin, Xing-Qi;Lee, Chi-Won
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.537-540
    • /
    • 2005
  • Durability of the polymer-modified mortars using the redispersible SBR and PAE powder-modified mortars were experimentally investigated. Results of a previous study were used to determine the mix proportion that optimized the strength, and the freezing-thawing resistence, the carbonation depth and the chloride intrusion depth of the mortar for various polymer-cement ratios were studied. After 300 freezing-thawing cycles, the rate of weight reduction decreased from 7 to below 2 $\%$ as the polymer-cement ratios increased from 0 to 15 $\%$, and, on the 150 cycle basis, durability index increased from 60 to 98. Carbonation depth decreased from initial value of 5.5 to about 2.5 mm and chloride intrusion depth did from 3.5 to 1.5 mm

  • PDF

Effects of Fillers on Mixing and Mechanical Properties of Polymer Concrete (충진재가 폴리머 콘크리트의 배합과 역학적 성질에 미치는 영향)

  • 연규석;김광우;김기성;김관호
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.35 no.2
    • /
    • pp.81-91
    • /
    • 1993
  • This study was performed to evalute effects of fillers on the mixing characteristics and mechanical properties of polymer concrete. Two types of unsaturated polyester polymer and two types of epoxy resin were used as binder material, and the portland cement, a fly ash and heavy calcium carbonate were used as filler. Following conclusions were drawn from the research results. 1. Working life of polymer concrete was not affected by filler types, but affected significantly by polymer types and quantities of hardener and catalysts. 2. Without concerning polymer types, use of heavy calcuim carbonate as filler was the best in improving workability.3. The highest strength was achieved by heavy calcium carbonate in using unsaturated polyester resin and by fly ash in using epoxy resin type.4. Elastic modulus was in the range of 2.05X 10-5~2.6X 10-5gf/cm$^2$, which was approximatly 60% of that of cement concrete. Heavy calcium carbonate with unsaturated polyester resin and fly ash with epoxy resin showed relatively higher elastic modulus.

  • PDF

Comparison of Adhesion Performance According to Concrete Moisture Content of Primer Mixed with Cement and Modified Polymer (시멘트와 변성 폴리머를 혼합한 프라이머의 콘크리트 함수율에 따른 부착성능 비교)

  • Kang, Hyo-Jin;An, Ki-Won;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.231-232
    • /
    • 2019
  • In this study, primers were prepared by mixing cement and modified polymer, and the adhesion to the substrate surface was enhanced by using cement which is the same material as the basement outer wall. The improved primer is used to verify the adhesion performance of the substrate in wet concrete environments.

  • PDF

Corrosion-Inhibition and Durability of Polymer-Modified Mortars Using Redispersible Polymer Powder with Nitrite-Type Hydrocalumite (재유화형 분말수지와 아질산형 하이드로칼루마이트를 병용한 폴리머 시멘트 모르타르의 방청성 및 내구성)

  • Kim, Wan-Ki;Hong, Sun-Hee
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.3
    • /
    • pp.275-283
    • /
    • 2012
  • Nitrite-type hydrocalumite (calumite) is a material that can adsorb the chloride ions ($Cl^-$)that cause the corrosion of reinforcing bars and liberate the nitrite ions ($NO_2{^-}$) that inhibit corrosion in reinforced concrete, and can provide a self-corrosion inhibition function to the reinforced concrete. In this study, VA/E/MMA-modified mortars with calumite were prepared with various calumite contents and polymer binder-ratios, and tested for corrosion inhibition, chloride ion penetration, carbonation and drying shrinkage. As a result, regardless of polymer-binder ratio, the replacement of ordinary Portland cement with hydrocalumite has a marked effect on the corrosion inhibiting property of the polymer-modified mortars. However, chloride ion penetration and carbonation depths are somewhat increased with higher calumite content, but can be remarkably decreased depending on the polymer-binder ratios. The 28-d drying shrinkage shows a tendency to increase with the polymer-binder ratio and calumite content. VA/E/MMA-Modified mortars with 10 % calumite did not satisfy KS requirements. Accordingly, a calumite content of 5 % is recommended for the VA/E/MMA-modified mortars with calumite.