• Title/Summary/Keyword: 폴리머콘크리트

Search Result 536, Processing Time 0.021 seconds

Analysis Study on Fatigue Stress on the Orthotropic Steel Deck Applied Polymer Concrete Pavement (폴리머 콘크리트 포장을 적용한 강바닥판의 피로응력에 관한 해석적 연구)

  • Han, Bum-Jin;Yoon, Sang-Il;Choi, Byung-Jin;Choi, Jin-Woong;Park, Sun-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.5
    • /
    • pp.68-77
    • /
    • 2014
  • In this study, polysulfide epoxy polymer concrete was chosen as an ultra thin bridge deck overlay, and the effect of polymer concrete pavement on the fatigue stress range of the orthotropic steel deck was analyzed through the comparative analysis with epoxy asphalt pavement and SFRC pavement. Abaqus was used to estimate the fatigue stress range, and signed von-mises stress was used to estimate fatigue stress range according to pavement materials and thickness, considering there were multi axis stresses which have longitudinal and lateral direction on the welded parts of the steel deck.

A Study on the Fundamental Properties of Cement Mortar Using Polymer Coated Crumb Rubber (폴리머 코팅 폐타이어 분말을 혼입한 시멘트 모르터의 기초적 성질)

  • Song, Hun;Jo, Young-Kug;Soh, Yang-Seob
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.6
    • /
    • pp.163-172
    • /
    • 1996
  • Recently, the disposal of used vehicle tires is a big social problem because the amount of used vehicle tires has been increased with development of' automobile industry. Many researches have been made on the recycling of used vehicle tires in the various fields of industry as well as construction industry. When the crumb rubber made of vehicle tires is mixed in cement concrete and mortar, it is indicated that the adhesive strength of interface between the crumb rubber and cement hydrates is very low. The purpose of this study is to improve the fundamental properties by increasing of the adhesion strength of styrene-butadiene rubber(SF3R) latex coated crumb rubber in ; cement mortar. SBR-modified mortar using crumb rubber is also tested as the same method. From the test results, the cement mortar using SBR latex coated crumb rubber have a good fundamental properties compared with that using uncoated crumb rubber. The mechanical properties of SBR-modified mortar using crumb rubber with polymer-cement ratios of 10% are also improved.

The Properties of Durability and Strength of Fiber-Reinforced Polymer-Modified Mortars Using Eco-Friendly UM Resin (친환경 UM수지를 사용한 섬유보강 폴리머 시멘트 모르타르의 내구성 및 강도 특성)

  • Kwon, Min-Ho;Seo, Hyun-Su;Lim, Jeong-Hee;Kim, Jin-Sup
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.3
    • /
    • pp.313-320
    • /
    • 2013
  • In this study, performance of fiber-reinforced polymer-modified mortar was studied for the development of eco-friendly materials for high performance repair and reinforcement. The general cement mortar and eco-friendly UM resin was mixed with a certain percentage for increased durability. To increase the strength of the polymer-modified mortar, PVA fiber, steel fiber and hybrid fiber were added at a constant rate. Hybrid fiber is contains the same percentage of PVA fiber and steel fiber. In order to determine the strength properties of fiber-reinforced polymer-modified mortar, the compressive strength test, the splitting tensile strength test and the flexural strength test were performed. And, in order to determine the durability properties of fiber-reinforced polymer-modified mortar, water absorption test and chemical resistance test were performed. From the experimental results, polymer-modified mortar using UM resin was improved durability. And the tensile strength and flexural strength increased, which were the vulnerability of fiber reinforced polymer-modified mortar. From this study, fiber-reinforced polymer-modified mortar using eco-friendly UM resin can be used to repair and reinforcement for the external exposure of concrete structures to improve the durability.

Workability of Polymeric Concrete for Lunar Infrastructure (달 시설물을 위한 폴리머 콘크리트의 시공성 연구)

  • Lee, Jaeho;Lee, Tai Sik;Ann, Ki Yong;Chang, Byung Chul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.2
    • /
    • pp.507-512
    • /
    • 2017
  • For manned planetary exploration, human beings are developing technologies that can permanently reside on the planet, and the basic three elements of residence, such as clothing and shelter, are required to support essential technologies in construction. In order to develop infrastructure construction technology internationally, various materials and methods such as local cementation, sulfur and aluminum have been tried. in this study, a purpose is proposed a polymer concrete construction validation technology that appropriates the conditions required for manmade exploration in order to develop construction infrastructure material technology using polymer. Concrete specimens with a 10% weight ratio polymer prepared by heating on the bottom were stabilized after 2 hours of heating, and the strength was lower than the top heating method, but the solidifying speed was 2 times faster. These results are expected to be applicable not only to construction of lunar facilities for manned exploration but also to improve the construction of infrastructures such as roads and levees to prevent dust.

Influence of Fine Aggregate Properties on Unhardened Geopolymer Concrete (잔골재 특성이 굳지 않은 지오폴리머 콘크리트에 미치는 영향)

  • Cho, Young-Hoon;An, Eung-Mo;Lee, Su-Jeong;Chon, Chul-Min;Kim, Dong-Jin
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.2
    • /
    • pp.101-111
    • /
    • 2016
  • It is possible that aggregates add on to geopolymer based fly ash to mix mortar and concrete like cement. This is necessary to evaluate mineral composition, particle shape, surface, size distribution, density and absorption ratio for fine aggregates due to few detailed research to examine influence of fine aggregates properties on unhardened geopolymer concrete. In this research, used two different fine aggregates, Jumunjin sand(having quartz, mica, feldspar, pyroxene in mineral composition, more than 96% of total size between -0.60 and +0.30mm, angular shape and rough surface) and ISO sand(having almost all quartz in mineral composition, more than 51% size between -1.40 and +0.60mm, simultaneously varied size distribution, spherical shape and smooth surface). After an experimental result of the varied ratio of Si/Al=1.0-4.1 geopolymer paste, mix proportion respectively applied Si/Al=1.5 having the highest compressive strength to mortar and Si/Al=3.5 having the highest consistency to concrete. Geopolymer mortar by mixing with Jumunjin and ISO sand in varied range of 20-50wt.% showed flow size increase between 69.5 and 112.0mm, between 70.5 and 126.0mm respectively. Geopolymer concrete at an addition of 77wt.% of total aggregates ratio showed that average compressive strength was 32MPa and the consistency was favorable to molding. Since ISO sand observing varied size distribution, spherical shape, smooth surface, low absorption ratio resulted in advantageous properties on consistency of geopolymer, geopolymer concrete can be suitable for using the fine aggregates similar to ISO sand.

Study on Mechanical Properties of Geopolymer Concrete using Industrial By-Products (산업부산물을 사용한 지오폴리머 콘크리트의 역학적 특성에 관한 연구)

  • Kim, Si-Hwan;Koh, Kyung-Taek;Lee, Jang-Hwa;Ryu, Gum-Sung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.1
    • /
    • pp.52-59
    • /
    • 2014
  • This study examines the compressive strength, elastic modulus and splitting tensile strength of geopolymer concrete in order to evaluate its mechanical characteristics according to the admixing of fly ash and blast furnace slag. Moreover, identical tests are also conducted considering the amount of powder, the mixing ratio of alkali activator and the mixing ratio of silica fume for further comparative analysis considering various variables. The comparison with the formulae specified in Korean and overseas codes reveal that a mixing ratio of 18% is adequate for the alkali activator and that a replacement ratio of 5% by silica fume is recommended for silica fume. The elastic modulus of the geopolymer concrete appears to increase slightly with the increase of the compressive strength per variable and age and to be smaller than the values predicted by the formulae specified in Korean and overseas codes. In addition, the examination of the stress-strain curves shows that the geopolymer concrete exhibits ductile behavior compared to the conventional OPC. In view of the splitting tensile strength, high strength is observed for a powder content of $400kg/m^3$ and a replacement ratio of 18% by silica fume. The resulting ratio of the compressive strength to the splitting tensile strength is seen to range between 8.7 and 10.2%.

Utilization of Polymer Concrete as Sustainable Construction Materials (지속가능한 건설재료로서 폴리머 콘크리트의 이용)

  • 연규석;주명기
    • Magazine of the Korea Concrete Institute
    • /
    • v.14 no.4
    • /
    • pp.60-65
    • /
    • 2002
  • 21세기에 들어 환경문제를 고려하지 아니한 개발과 발전은 논할 수 없게 되었다. 1972년 스톡홀름에서 개최된 '인간 환경에 대한 회의'에서 환경보존과 경제발전에 대한 문제가 제기되면서부터 이에 대한 관심이 고조되기 시작하였다. 또한 1992년 지속 가능한 개발을 위한 'Agenda 21'이 리우환경회의에서 채택됨으로써 개발정책도 변화를 가져와야만 하게 되었다.(중략)

Mechanical Properties of High Strength Polymer Concrete Using Unsaturated Polyester Resin (불포화 폴리에스터 수지를 이용한 고강도 폴리머 콘크리트의 역학적 특성)

  • 연규석;김관호;이필호;김동수;박윤제
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.3
    • /
    • pp.131-141
    • /
    • 1994
  • This study was carried out to develop a procedural method to produce high strength polymer concrete using unsaturated polyt.ster resin and to examine its mechanical properties. Various mechanical properties were analyzed with respect to materials and additives. A method to produce high strength polymer concrete was successfully developed. Comperssive strength of $1,291~1,445 kg/cm^2$, splitting tensile strength of $106~145 kg/cm^2$ and flexural strength of $182~235 kg/cm^2$, at age of 7days wer-e achieved from the cylinderical ;md beam specimen prepared with the method. Modulus of elasticity. Poisson's rntio and the ultirnate corn pressive strain of cylinderical specimen were $2.8~3.8{\times}10^5\;kg/cm^2$. 0.21~0.32, and 0.005~0. 0065, respectively. Modulus of elasticity of the polymer concrete was smaller than that of hlgh strength cement concrete while the maximum compressive strain was very larger than that of high strength cement concrete.