• Title/Summary/Keyword: 폴리디아세틸렌

Search Result 7, Processing Time 0.02 seconds

Synthesis of Polymerizable Amphiphiles with Basic Oligopeptides for Gene Delivery Application (염기성 올리고펩티드 유도체를 가진 고분자 리피드의 합성 및 유전자 전달 효과 연구)

  • Bae, Seon Joo;Choi, Hye;Choi, Joon Sig
    • Polymer(Korea)
    • /
    • v.37 no.1
    • /
    • pp.94-99
    • /
    • 2013
  • Polydiacetylene (PDA) is made by photopolymerization of self-assembled diacetylene monomers. If diacetylene monomers are arranged systematically and close enough with distance of atoms, 1,4-addition polymerization will occur by the irradiation of 254 nm ultraviolet rays and then PDA will have alternated ene-yne polymer chains at the main structure. Aqueous solutions of diffused PDA is tinged with blue which shows ${\lambda}_{max}$ 640 nm. Visible color changes from blue to red occurs in response to a variety of environmental perturbations, such as temperature, pH, and ligand-receptor interactions. In this study, we synthesized cationic peptides - PCDA(10,12-pentacosadyinoic acid) liposome using a solid phase peptide synthesis (SPPS) method and prepared liposome solutions at various molar ratios using MPEG-PCDA. When mammalian cells were treated with the liposomes, high transfection efficiency and low toxicity were observed.

Polydiacetylene-Based Chemo-/Biosensor of Label Free System with Various Sensing Tools (다양한 감지 방법을 갖고 있는 폴리디아세틸렌 기반 비표지 화학/바이오센서)

  • Park, Hyun-Kyu;Park, Hyun-Gyu;Chung, Bong-Hyun
    • KSBB Journal
    • /
    • v.22 no.6
    • /
    • pp.409-413
    • /
    • 2007
  • Polydiacetylene(PDA)-based sensors possess a number of properties that can be successfully applied for label-free detection system. PDA is one of the most attractive color-generating materials, with growing applications as sensors. Here we introduce various PDA-based devices, used as biosensor, chemosensor, thermosensor, and optoelectronics sensor. In general, PDA liposomes and films are closely packed and properly designed for polymerization via 1,4-addition reaction to form an ene-yne alternating polymer chain. PDA-based two/three dimensional structures have been used for colorimetric or fluorescent devices, sensing biological as well as chemical components. This color-generating material also present a very high charge carrier mobility, allowing its application as field-effect transistor (FET). The immobilized PDA structures or films have distinct advantages for the detection of low concentration target molecules over the aqueous solution-based detection systems. In the present review, reported detection methods by using various PDA structures are summarized with updated references.

Development of Microfluidic Polydiacetylene Sensor Chip for pH detection (pH 검출을 위한 미세유동 폴리디아세틸렌 센서칩 개발)

  • Hwang, Hyun-Jin;Song, Si-Mon
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2415-2418
    • /
    • 2008
  • Polydiacetylenes (PDAs) are very attractive chemical substances which have distinctive features of color change and fluorescence emission by thermal or chemical stress. Especially, when PDAs contact with solutions of a particular pH, such as a strong alkaline sodium hydroxide (NaOH) solution or a strong acidic hydrogen chloride (HCl) solution, PDAs change their color from non-fluorescent blue to fluorescent red. In this study, we propose a novel method to detect alkaline pH using PDAs and NaOH solutions by hydrodynamic focusing on a microfluidic chip. Preliminary results indicate that the fluorescent intensity of PDAs increases in respond to the NaOH solution concentrations. Also, the fluorescence is quenched back when the PDAs are in contact with a HCl solution. These results are useful in a microfluidic PDA sensor chip design for pH detection.

  • PDF

Synthesis and Characterization of Polyethylenimine-conjugated Polydiacetylene Liposome as a Gene Delivery Carrier (폴리디아세틸렌 리포좀 표면에 저분자량의 폴리에틸렌이민을 연결한 새로운 유전자 전달체 합성 및 특징 연구)

  • Lee, Young Hwa;Yim, Kang Hyuck;Heo, Jungseok;Choi, Joon Sig
    • Polymer(Korea)
    • /
    • v.38 no.1
    • /
    • pp.43-48
    • /
    • 2014
  • In this paper, we made a new polycationic polymeric liposome composed of low molecular weight polyethylenimine (PEI) and 10,12-pentacosadiynoic acid (PCDA). PCDA liposome was prepared by ultraviolet irradiation. PEI was further conjugated on the surface of the polymerized PCDA liposome using coupling reagents to make PCDA-PEI. The blue-to-red transition of PCDA liposome was observed during the coupling reaction. The size distribution of liposome and complexes with plasmid DNA was measured by dynamic light scattering (DLS). The complex formation was also identified by agarose gel electrophoresis and PicoGreen reagent assay. We confirmed the complex formation of the polymeric liposome with DNA and then performed transfection and cytotoxicity assay in HEK 293 and HeLa cells. As a result, PCDA-PEI showed significant gene transfection efficiency and low cytotoxicity. This study shows that PEI-conjugated PCDA liposome could be an efficient gene or drug delivery carrier.

Deep Neural Network Technology for Analyzing PDA Colorimetric Transition Sensors in Pathogen Detection (병원균 검출용 PDA 색 전이 센서 분석을 위한 심층신경망 기술)

  • Junhyeon Jeon;Huisoo Jang;Mingyeong Shin;Tae-Joon Jeon;Sun Min Kim
    • Journal of the Korean Society of Visualization
    • /
    • v.22 no.2
    • /
    • pp.27-34
    • /
    • 2024
  • In this study, we propose a novel approach for rapid and accurate pathogen detection by integrating Polydiacetylene (PDA) hydrogel sensors with advanced deep learning algorithms and visualization techniques. PDA hydrogel sensors exhibit a color transition in the presence of pathogens, enabling straightforward and quick pathogen detection. We developed a reliable pathogen detection system that combines deep neural network algorithms with color quantification technology for image-based analysis. This image-based system retains the ease of pathogen detection offered by PDA sensors while deriving quantified color standards to overcome the limitations of human visual assessment, enhancing reliability. This advancement contributes to public health and the development and application of pathogen detection technology.