• Title/Summary/Keyword: 폭연특성

Search Result 7, Processing Time 0.024 seconds

The Study on Solid Propellant Deflagrabillity by Shotgun & RQ Bomb Test (Shotgun & RQ Bomb시험에 의한 추진제 폭연 특성)

  • 유지창;김창기;이경주
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.6 no.3
    • /
    • pp.9-17
    • /
    • 2002
  • This Study is to investigate 8 composite propellants including Butacene and ${Bi_2}{O_3}$ by Shotgun/RQ Bomb test. Burning rate and mechanical properity are known to be major factors in determining the deflagrability of propellant. Propellant including over 5.5% Butacene(Ferrocene grafted HTPB) burned out over 135 m/s of impact velocity during Shotgun/RQ Bomb test. It was blown that Butacene was very sensitive material under high velocity impact. In the test results, propellants under 25mm/s in burning rate at 1500 psia could meet the requirements for IM of UN Test Series 7c(ii). Propellant deflagrabillity depends on burning rate at performance in the results of the present.

Shotgun/RQ Bomb 시험에 의한 추진제 폭연 특성

  • 유지창;김창기;류백능
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.29-29
    • /
    • 2000
  • 추진제의 폭연 특성을 실험실 규모로 측정하는 시험방법으로 NAWC에서 개발한 BIC (Ballistic Impact Chamber) 시험과 SNPE에서 개발한 Shotgun/RQ Bomb 시험이 있다. SNPE에서는 화약과 추진제가 UNO 위험등급 분류체계에서 1.6급수(우연한 개시나 반응의 전환 가능성이 거의 없는 매우 둔감한 물질)로 분류되는 기준을 UN Test Series 7c(ii)에 탄속 150m/s에서 dP/dt가 15MPa 이내로 규정하고 있다.(중략)

  • PDF

Combustive Characteristic and Toxic Gases Generation of Interior Materials -The focus for resist-carpet, resist-after-tretment plywood, sofa leather- (내장재의 연소 및 독성가스 발생 특성 -방염 카페트, 방염 후처리 합판, 쇼파 내자를 중심으로-)

  • 김일수;류경옥
    • Fire Science and Engineering
    • /
    • v.12 no.2
    • /
    • pp.43-59
    • /
    • 1998
  • It was studied a compared estimation of the fire risk of the three kinds of the interior materials, such as a resist carpet, a resist-after-treatment plywood and sofa leather. Toxic gases, CO, CO2, NOx, SO2, HCN, HCI were detected during the combustion of the samples. A resist-carpet was more combustible than the resist-after-treatment plywood and sofa leather in the combustion characteristics and has a blow-up-combustion of combustion in all the samples. The generation of CO reached the lethal doses in minute after the combustion was begun. NOx and So2 were detected not more than each of the lethal doses, while HCN was detected in the carpet 20.6 times than the sofa leather, and 4.6 times than the resist-after-treatment plywood. HCI was detected in the carpet 4.48 times than the sofa leather and 2.47 times than the resist-after-treatment plywood. It is conclusion that the carpet was the highest in the fire risk among the three kinds of the interior materials.

  • PDF

A Study on Physicochemical Characteristics of Hydrogen Gas Explosion (수소가스 폭발의 물리화학적 특성 연구)

  • Jo, Young-Do
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.1
    • /
    • pp.8-14
    • /
    • 2012
  • Hydrogen is considered to be the most important future energy carrier in many applications reducing significantly greenhouse gas emissions, but the explosion safety issues associated with hydrogen applications need to be investigated and fully understood to be applicable as the carrier. The risk associated with a explosion depends on an understanding of the impacts of the explosion, particularly the pressure-time history during the explosion. This work provides the effects of explosion parameters, such as specific heat ratio of burned and unburned gas, equilibrium maximum explosion pressure, and burning velocity, on the pressure-time history with flame growth model. The pressure-time history is dominantly depending on the burning velocity and equilibrium maximum explosion pressure of hydrogen-air mixture. The pressure rise rate increase with the burning velocity and equilibrium maximum explosion pressure. The specific heat ratio of unburned gas has more effect on the final explosion pressure increase rate than initial explosion pressure increase rate. However, the specific heat ratio of burned gas has more influence on initial explosion pressure increase rate. The flame speeds are obtained by fitting the experimental data sets. The flame speeds for hydrogen in air based on our experimental data is very low, making a transition from deflagration to detonation in a confined space unlikely under these conditions.

Explosion Hazard Assessment of Pharmaceutical Raw Materials Powders (원료의약품 분진의 폭발 위험성 평가)

  • Lee, Joo Yeob;Lee, Keun Won;Park, Sang Yong;Han, In Soo
    • Korean Chemical Engineering Research
    • /
    • v.55 no.5
    • /
    • pp.600-608
    • /
    • 2017
  • Hazard risk of explosion on pharmaceutical raw materials dust in pharmaceutical industry often exists when it is handled or processed in the industrial sites, and explosion accident is caused by this. In this study, the dust explosion characteristics of the three pharmaceutical raw materials samples were measured. The main explosion characteristics are as follows: $P_{max}$, MIE and MIT of loxoprofen acid having $5.31^{\circ}C$ of median diameter are obtained 8.4 bar, 1 mJ < MIE < 3 mJ and $550^{\circ}C$. $P_{max}$, MIE and MIT of camphorsulfonate having $95.63^{\circ}C$ of median diameter are obtained 7.9 bar, 30 mJ < MIE < 100 mJ and $510^{\circ}C$. $P_{max}$, MIE and MIT of rifampicine having $26.48^{\circ}C$ of median diameter are obtained 7.9 bar and 1 mJ < MIE < 3 mJ and $470^{\circ}C$. The deflagration index ($K_{st}$) and the explosion index (EI) were obtained by using these data. The explosion hazard assessment of pharmaceutical raw materials dust was compared and examined. As a result, the explosion hazard assessment according to deflagration index and explosion index were the explosion class with St 2 and the explosion hazard rating of severe for loxoprofen acid & rifampicine and St 1 and strong for clopidogrel camphorsulfonate, respectively.

A Full Scale Hydrodynamic Simulation of High Explosion Performance for Pyrotechnic Device (파이로테크닉 장치의 고폭 폭발성능 정밀 하이드로다이나믹 해석)

  • Kim, Bohoon;Yoh, Jai-ick
    • Journal of the Korea Society for Simulation
    • /
    • v.28 no.2
    • /
    • pp.1-14
    • /
    • 2019
  • A full scale hydrodynamic simulation that requires an accurate reproduction of shock-induced detonation was conducted for design of an energetic component system. A detailed hydrodynamic analysis SW was developed to validate the reactive flow model for predicting the shock propagation in a train configuration and to quantify the shock sensitivity of the energetic materials. The pyrotechnic device is composed of four main components, namely a donor unit (HNS+HMX), a bulkhead (STS), an acceptor explosive (RDX), and a propellant (BPN) for gas generation. The pressurized gases generated from the burning propellant were purged into a 10 cc release chamber for study of the inherent oscillatory flow induced by the interferences between shock and rarefaction waves. The pressure fluctuations measured from experiment and calculation were investigated to further validate the peculiar peak at specific characteristic frequency (${\omega}_c=8.3kHz$). In this paper, a step-by-step numerical description of detonation of high explosive components, deflagration of propellant component, and deformation of metal component is given in order to facilitate the proper implementation of the outlined formulation into a shock physics code for a full scale hydrodynamic simulation of the energetic component system.

Influence of Mixture Non-uniformity on Methane Explosion Characteristics in a Horizontal Duct (수평 배관의 메탄 폭발특성에 있어서 불균일성 혼합기의 영향)

  • Ou-Sup Han;Yi-Rac Choi;HyeongHk Kim;JinHo Lim
    • Korean Chemical Engineering Research
    • /
    • v.62 no.1
    • /
    • pp.27-35
    • /
    • 2024
  • Fuel gases such as methane and propane are used in explosion hazardous area of domestic plants and can form non-uniform mixtures with the influence of process conditions due to leakage. The fire-explosion risk assessment using literature data measured under uniform mixtures, damage prediction can be obtained the different results from actual explosion accidents by gas leaks. An explosion characteristics such as explosion pressure and flame velocity of non-uniform gas mixtures with concentration change similar to that of facility leak were examined. The experiments were conducted in a closed 0.82 m long stainless steel duct with observation recorded by color high speed camera and piezo pressure sensor. Also we proposed the quantification method of non-uniform mixtures from a regression analysis model on the change of concentration difference with time in explosion duct. For the non-uniform condition of this study, the area of flame surface enlarged with increasing the concentration non-uniform in the flame propagation of methane and was similar to the wrinkled flame structure existing in a turbulent flame. The time to peak pressure of methane decreased as the non-uniform increased and the explosion pressure increased with increasing the non-uniform. The ranges of KG (Deflagration index) of methane with the concentration non-uniform were 1.30 to 1.58 [MPa·m/s] and the increase rate of KG was 17.7% in methane with changing from uniform to non-uniform.