• 제목/요약/키워드: 폭연특성

검색결과 7건 처리시간 0.017초

Shotgun & RQ Bomb시험에 의한 추진제 폭연 특성 (The Study on Solid Propellant Deflagrabillity by Shotgun & RQ Bomb Test)

  • 유지창;김창기;이경주
    • 한국추진공학회지
    • /
    • 제6권3호
    • /
    • pp.9-17
    • /
    • 2002
  • 본 연구에서는 Butacene과 ${Bi_2}{O_3}$함량 변화에 따라 혼합된 추진제 8종을 대상으로 Shotgun/RQ Bomb 시험에 의한 추진제 폭연 특성을 살펴보았다. 추진제 연소속도와 기계적 특성은 추진제 폭연 특성에 크게 영향을 줄 수 있는 인자로 알려져 있다. 바인더이면서 연소촉매로 작용하는 Butacene(Ferrocene grafted HTPB)의 함량이 5.5% 이상에서는 탄속 135 m/s에서 모두 연소되었는데, 이는 Butacene이 고속으로 충격시 매우 민감한 물질로 작용함을 알 수 있었다 시험 결과 추진제의 연소속도가 압력 1500 psia에서 25 mm/s 이하의 추진제는 UN Test Series 7c(ii) 규격을 만족하였다. 현재까지의 결과로 볼 때 추진제의 폭연 특성은 추진제의 연소속도에 의존하는 것으로 판단된다.

Shotgun/RQ Bomb 시험에 의한 추진제 폭연 특성

  • 유지창;김창기;류백능
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2000년도 제15회 학술강연회논문초록집
    • /
    • pp.29-29
    • /
    • 2000
  • 추진제의 폭연 특성을 실험실 규모로 측정하는 시험방법으로 NAWC에서 개발한 BIC (Ballistic Impact Chamber) 시험과 SNPE에서 개발한 Shotgun/RQ Bomb 시험이 있다. SNPE에서는 화약과 추진제가 UNO 위험등급 분류체계에서 1.6급수(우연한 개시나 반응의 전환 가능성이 거의 없는 매우 둔감한 물질)로 분류되는 기준을 UN Test Series 7c(ii)에 탄속 150m/s에서 dP/dt가 15MPa 이내로 규정하고 있다.(중략)

  • PDF

내장재의 연소 및 독성가스 발생 특성 -방염 카페트, 방염 후처리 합판, 쇼파 내자를 중심으로- (Combustive Characteristic and Toxic Gases Generation of Interior Materials -The focus for resist-carpet, resist-after-tretment plywood, sofa leather-)

  • 김일수;류경옥
    • 한국화재소방학회논문지
    • /
    • 제12권2호
    • /
    • pp.43-59
    • /
    • 1998
  • 화재위험성이 큰 유흥업소에서 주로 사용하는 내장재중 방염 카퍼l트, 방영 후처리 합환, 쇼파 례자동 3가지 시료에 대한 연소특성과 CO, CO2, 02, NO., S02, HCN, HCl둥 독성가스를 검출하여 화재 위험 성을 비교명가 하였다. 연소특성에 있어 방염 카페트가 방염 후처리 합판, 쇼파 레자 보다 연소가 잘 되 었고, 폭연 연소가 일어났다. 모든 시료에서 CO의 발생은 연소시작 후 1분 이내에 치사농도를 상회(上 ) 하였으나 NOx와 S02는 치사농도를 상회(上 ) 하지 않았지만. HCN는 카페트에서 쇼파 레자 보 다 20.6배, 방염 후처리 합판 보다 4.6배가 검출 되었고. HCl은 차페트에서 쇼파 례자 보다 4.48배, 방 염 후처리 합판 보다 2.47배가 검출 되었다. 이상과 같이 3종의 내장재중 방염 차페트가 화재위험성이 가장 높다는 결론을 얻을 수 있었다.

  • PDF

수소가스 폭발의 물리화학적 특성 연구 (A Study on Physicochemical Characteristics of Hydrogen Gas Explosion)

  • 조영도
    • 한국가스학회지
    • /
    • 제16권1호
    • /
    • pp.8-14
    • /
    • 2012
  • 수소는 온실가스 배출을 저감하기 위한 미래 에너지로 고려되고 있지만, 폭발위험에 대한 문제점을 지니고 있다. 따라서 수소가 미래 에너지로 사용되기 위해서는 폭발위험에 대한 연구가 충분히 이루어져야 한다. 폭발위험은 폭발충격에 대한 이해 즉, 폭발과정에서 압력 상승속도에 대한 분석과 밀접한 관계가 있다. 본 연구에서는 폭발에 영향을 미치는 변수, 즉 연소 전후의 비열비, 화학평형상태에서 최대폭발압력, 그리고 연소속도, 이들 변수가 압력 상승속도에 미치는 영향을 살펴보았다. 화학평형상태에서 최대폭발압력과 연소속도는 압력 상승곡선에 큰 영향을 미치는 것을 알 수 있었고, 미연소 가스의 비열비는 초기압력 상승속도보다 최종압력 상승속도에 더욱 영향을 미치고, 연소가스의 비열비는 반대로 초기압력 상승속도에 더욱 큰 영향을 미치는 것을 알 수 있었다. 연소속도는 실험 데이터로부터 구하였으며 밀폐공간에서 수소가스 폭발에서는 폭연에서 폭굉으로 전이가 일어나기에는 연소속도가 매우 느림을 알 수 있었다.

원료의약품 분진의 폭발 위험성 평가 (Explosion Hazard Assessment of Pharmaceutical Raw Materials Powders)

  • 이주엽;이근원;박상용;한인수
    • Korean Chemical Engineering Research
    • /
    • 제55권5호
    • /
    • pp.600-608
    • /
    • 2017
  • 산업현장에서 취급되거나 가공되는 원료의약품 분진의 폭발 위험성은 항상 존재하며, 이로 인한 폭발사고가 자주 발생되고 있다. 본 연구에서는 원료의약품 시료 3종의 분진폭발특성을 측정하였다. 주요 폭발특성 측정값은 록소프로펜산은 평균 입경이 $5.31{\mu}m$이며, $P_{max}$는 8.4 bar, 최소점화에너지는 1 mJ < MIE < 3 mJ이며 최소점화온도는 $550^{\circ}C$이다. 클로피도그렐 캄포르술폰산염은 평균 입경이 $95.63{\mu}m$이며, $P_{max}$는 7.9 bar, 최소점화에너지는 30 mJ < MIE < 100 mJ이며 최소점화온도는 $510^{\circ}C$이었다. 리팜피신은 평균 입경이 $26.48{\mu}m$이며 $P_{max}$는 7.9 bar, 최소점화에너지는 1 mJ < MIE < 3 mJ이며 최소점화온도는 $470^{\circ}C$로 나타났다. 이들 값을 적용하여 폭연지수($K_{st}$)와 폭발지수(EI)의 폭발위험등급을 구하고, 원료의약품 분진의 폭발 위험성을 비교 검토하였다. 그 결과 폭발 위험성은 록소프로펜산과 리팜피신의 폭발등급은 St 2이고 폭발위험등급은 severe이며, 클로피도그렐 캄포르술폰산염의 폭발등급은 St 1이고 폭발위험등급은 strong으로 나타났다.

파이로테크닉 장치의 고폭 폭발성능 정밀 하이드로다이나믹 해석 (A Full Scale Hydrodynamic Simulation of High Explosion Performance for Pyrotechnic Device)

  • 김보훈;여재익
    • 한국시뮬레이션학회논문지
    • /
    • 제28권2호
    • /
    • pp.1-14
    • /
    • 2019
  • 고에너지 구성 요소 시스템의 설계를 위하여 고폭화약의 폭발 반응을 엄밀하게 모사할 수 있는 실제 규모의 하이드로다이나믹 해석을 수행하였다. 폭발성능 정밀 해석 SW는 고에너지 물질의 충격 민감도를 정량화하기 위한 반응 유동 모델을 검증하고 일련의 화약 트레인을 통과하는 충격파 전달을 예측하기 위해 개발되었다. 파이로테크닉 장치는 여폭약(HNS+HMX), 격벽(STS), 수폭약(RDX), 파이로테크닉 추진제(BPN)로 구성된다. 추진제 연소로 인하여 생성된 고압의 연소 가스는 충격파와 저밀도파 간 간섭에 의해 유도된 고유의 진동 유동 특성을 파악하기 위하여 10 cc 밀폐형 챔버에 유입된다. 특정 주파수(${\omega}_c=8.3kHz$)에서의 피크 특성을 검증하기 위하여 실험 및 계산으로 측정된 압력 진동을 비교하였다. 본 연구에서는 고폭화약의 폭발반응과 추진제의 폭연반응, 비-반응 금속의 변형에 관하여 단계별 수치해석 기법들을 충격 물리 해석 SW로 구현함으로써 고에너지 물질 시스템에 대한 대규모 하이드로다이나믹 시뮬레이션을 용이하게 하였다. 개발된 고폭화약 폭발성능 정밀 해석 SW를 고에너지 구성 요소 시스템의 파이로테크닉 연소 반응 M&S에 적용하여 실험 결과와 비교함으로써 검증하였다.

수평 배관의 메탄 폭발특성에 있어서 불균일성 혼합기의 영향 (Influence of Mixture Non-uniformity on Methane Explosion Characteristics in a Horizontal Duct)

  • 한우섭;최이락;김형욱;임진호
    • Korean Chemical Engineering Research
    • /
    • 제62권1호
    • /
    • pp.27-35
    • /
    • 2024
  • 메탄, 프로판 등을 주성분으로 하는 연료가스는 폭발위험장소에서 사용될 수 있으며, 누출로 인한 공정조건의 영향으로 불균일한 혼합기를 형성할 수 있다. 균일한 혼합기를 대상으로 측정된 문헌 데이터를 이용한 화재 폭발 위험성 평가, 손상 예측은 가스 누출에 의한 실제 폭발 사고와 다른 결과를 얻을 수 있다. 본 연구에서는 가스 누출시 나타날 수 있는 농도 변화에 있어서 불균일성 혼합기의 폭발압력, 화염속도 등의 폭발특성을 조사하였다. 길이 0.82 m의 스테인리스 재질의 밀폐 배관에서 수행하였으며 컬러 초고속 카메라 및 압력 센서를 사용하여 관찰하였다. 또한 배관 내의 시간에 따른 농도차이 변화에 대해 회귀분석 모델을 사용하여 불균일 혼합물의 정량화 방법을 제안하였다. 본 연구의 농도 불균일성 조건에 있어서 메탄 폭발 시 전파화염은 불균일성 농도가 높아짐에 따라 화염 면적의 증가가 관찰되었고 이는 난류 화염의 주름진 화염 구조와 유사하였다. 메탄의 최대압력까지 걸리는 소요시간은 불균일성이 클수록 감소하였고, 폭발압력은 불균일성이 클수록 증가하였다. 농도가 불균일한 메탄의 KG(폭연지수)의 범위는 1.30~1.58 [MPa·m/s]으로서 메탄의 농도가 균일성에서 불균일성로 변화하면서 17.7% 증가하였다.