• Title/Summary/Keyword: 폭발 압력

Search Result 332, Processing Time 0.025 seconds

A Study on the Development of Low Power Automatic ON/OFF Valve System for Gas Leak Detection (가스 누출 감지를 위한 저전력 자동 ON/OFF 밸브 시스템 개발에 관한 연구)

  • Choi, Young Gyu
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.5
    • /
    • pp.369-374
    • /
    • 2021
  • Apartment recently built in kitchen is made is made because the gas hose with built-in ways invisible inside the sink. In this case, if the gas leaks, it is a dangerous method that can accumulate inside the sink and lead to an explosion. In this study, since the hose connected between the gas range and the intermediate valve is inside the sink, it is not possible to test for gas leaks, so a valve system that can easily check for gas leaks using a pressure sensor was studied. As for the pressure measurement method, the pressure of the hose connecting the intermediate valve and the gas range was measured so that data could be collected and analyzed using the I2C communication method. In addition, the calculation of the gas pressure supplied to the home was investigated for the atmospheric pressure error for the value calculated by adding the average value of the gas gauge pressure of 22.46 mbar at the inlet of the gas meter to the atmospheric pressure. A valve system was developed to detect minute gas leaks.

A Numerical Analysis on the Stress Behavior Characteristics of a Pressure Vessel for Hydrogen Filling by FEM (유한요소법을 이용한 수소충전용 압력용기의 응력 거동특성에 관한 수치적 연구)

  • Chol, Seunghyun;Byonl, Sung Kwang;Kim, Yun Tae;Choi, Ha Young
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.3
    • /
    • pp.38-44
    • /
    • 2022
  • As the supply of hydrogen charging stations for hydrogen supply accelerates due to the hydrogen economy revitalization policy, the risk of accidents is also increasing. Since most hydrogen explosion accidents lead to major accidents, it is very important to secure safety when using hydrogen energy. In order to utilize hydrogen energy, it is essential to secure the safety of hydrogen storage containers used for production, storage, and transportation of liquid hydrogen. In this paper, in order to evaluate the structural safety of a hydrogen-filled pressure vessel, the behavioral characteristics of gas pressure were analyzed by finite element analysis. SA-372 Grade J / Class 70 was used for the material of the pressure vessel, and a hexahedral mesh was applied in the analysis model considering only the 1/4 shape because the pressure vessel is axisymmetric. A finite element analysis was performed at the maximum pressure using a hydrogen gas pressure vessel, and the von Mises stress, deformation, and strain energy density of the vessel were observed.

Propagation Characteristics of Ground Vibration Caused by Blast Hole Explosion of High Explosives in Granite (고위력 폭약의 화강암 내 장약공 폭발에 의한 지반진동 전파특성에 관한 연구)

  • Gyeong-Gyu Kim;Chan-Hwi Shin;Han-Lim Kim;Ju-Suk Yang;Sang-Ho Bae;Kyung-Jae Yun;Sang-Ho Cho
    • Explosives and Blasting
    • /
    • v.41 no.4
    • /
    • pp.29-40
    • /
    • 2023
  • Rock blasting is utilized in various fields such as mining, tunneling, and the construction of underground structures. The role of rock blasting technology has became increasingly significant with the growing utilization of underground cavity. Blast hole pressure, generated during rock blasting, is a critical variable directly impacting factors such as crushing and blast vibration. It stands out as one of the most important parameters for assessing explosive performance and predicting blasting effects. While blast hole pressure has been studied by several researches, comparisons are challenging due to variations in experimental conditions such as explosive type, charge, and blasting conditions. In this study, blast hole pressure sensors and observation hole pressure sensors were developed to measure pressure during single-hole blasting, The experimental results were then used to discuss the propagation characteristics of pressure around the blast hole and the corresponding blast vibration.

Estimating the Area of Damage Caused by Gas Pipeline Leakage in Subway Construction Zones (지하철역 공사지역 도시가스 배관 누출로 인한 피해면적 산정)

  • Yang, Yong-Ho;Lee, Jae-Wook;Kong, Ha-Sung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.2
    • /
    • pp.419-427
    • /
    • 2024
  • This study assessed the potential impact of gas leakage resulting from accidental damage to buried urban gas pipelines during perforating operation near subway construction sites. The risk of explosions due to ignition sources such as static electricity, arising from gas infiltrating the subway construction site through storm sewers and sewage pipes, was evaluated using the ALOHA program. The results of the threat zone calculation, which input various parameters of urban gas pipelines such as length, diameter, and pressure, indicated that the flammable area within the vapor cloud extended from 1.2 to 1.4 km (red zone), the blast area ranged from 0.8 to 1.0 km (yellow zone), and the jet fire extended from 45 to 61 m (red zone). This study demonstrates that within the flammable area of the vapor cloud, a specific combination of concentration and conditions can increase flammability. The blast area may experience explosions with a pressure of 1.0 psi, sufficient to break glass windows. In the event of a jet fire, high temperatures and intense radiant heat exposure lead to rapid fire propagation in densely populated areas, posing a high risk of casualties. The findings are presented in terms of the sphere of influence and threat zone ranges.

Estimation of explosion risk potential in fuel gas supply systems for LNG fuelled ships (액화 천연 가스 연료 선박의 연료 공급 장치 폭발 잠재 위험 분석)

  • Lee, Sangick
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.9
    • /
    • pp.918-922
    • /
    • 2015
  • As international environmental regulations for pollutant and greenhouse gas emissions discharged from ships are being reinforced, it is drawing attention to use LNG as ship fuel. This paper compares the explosion risk potential in the LNG fuel gas supply systems of two types used in marine LNG fuelled vessels. By selecting 8500 TEU class container ships as target, LNG storage tank was designed and pressure conditions were assumed for the use of each fuel supply type. The leak hole sizes were divided into three categories, and the leak frequencies for each category were estimated. The sizes of the representative leak holes and release rates were estimated. The release rate and the leak frequency showed an inverse relationship. The pump type fuel gas supply system showed high leak frequency, and the pressure type fuel gas supply system showed high release rate. Computational fluid dynamics simulation was applied to perform a comparative analysis of the explosion risk potential of each fuel supply system.

Study on Blast Effects of Stemming Materials by Trauzl Lead Block Test and Numerical Analysis (트라우즐 연주시험과 수치해석에 의한 전색 매질별 발파효과 영향에 관한 연구)

  • Ko, Young-Hun;Kim, Seung-Jun;Baluch, Khaqan;Yang, Hyung-Sik
    • Explosives and Blasting
    • /
    • v.35 no.4
    • /
    • pp.19-26
    • /
    • 2017
  • The most widely used method for determining the blast effects of explosives is the Trauzl lead block test. This test is used to measure the explosive power (strength) of a substance by determining volume increase, which is produced by the detonation of a test explosive charged in the cavity of a lead block with defined quantity and size. In this paper, Trazul lead block test and AUTODYN numerical analysis were conducted to evaluate the coupling medium effect of blast hole. The effects of coupling materials can be expressed as the expansion of the cavity in a standard lead block through explosion of the explosives. The tests were conducted with emulsion explosives. The coupling mediums used as the filling material around a explosive charge were air, sand, water and gelatine. Results of test and numerical analysis showed that expansion of lead block were much more affected by water&gel than by sand and air. The water and gel showed similar results. As expected, the transmitted pressure and dynamic strain was higher in water and gelatine coupled blast hole than in air and sand.

Explosive Accidents and Safe Handling of an Experimental Liquid Rocket Engine Using Nitrous Oxide as Oxidizer (아산화질소를 산화제로 사용하는 실험용 액체로켓의 폭발사례 및 안전사용방안)

  • Choi, Songyi;Park, Sukyoung;Lee, Donggun;Kim, Dohun;Koo, Jaye
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.2
    • /
    • pp.46-54
    • /
    • 2015
  • Nitrous oxide is known as green and safe propellant, and can be supplied by its own vapor pressure. So, many liquid propulsion research institutes and university laboratories use nitrous oxide as oxidizer of experimental liquid rocket engine. However, the unknown explosions occurred twice during hot fire experiments using subscale ethanol/nitrous oxide thruster. In this paper, we surmised that the explosions were caused by the decomposition of nitrous oxide in the injector body and the recondensation of nitrous oxide. Improvement and the safe handling methods are suggested.

Hazards of decomposition and explosion for Tert-butylperoxymaleate (터셔리부틸퍼옥시말레이트의 분해 및 폭발 위험성)

  • Lee, Jung-Suk;Han, Ou-Sup
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.1
    • /
    • pp.40-47
    • /
    • 2021
  • In this study, hazards of decomposition and explosion for tert-butylperoxymaleate(TBPM), an organic peroxide, were evaluated by using various equipment to determine the cause of a fire explosion accident. As a result of DSC analysis, the instantaneous power density of TBPM was 26,401 kW/ml, and the NFPA reactive index(Nr) was classified as 4. And the positive value of EP(explosive propagation) and SS(shock sensitivity) showed that the TBPM had a potential hazard of explosion. From the experimental results, the shock sensitivity and friction sensitivity was rated as class 4 and 5, respectively. In the pressure vessel test, TBPM was ranked USA-PVT No.4 and evaluated as a self-reactive substance. In the combustion rate test, TBPM had the combustion rate of 167 mm/sec and was evaluated as the flammable solid classification 2 in GHS.

Evaluation on Blast Resistance Performance of Reinforced Concrete Wall Strengthened by FRP Sheet (FRP 시트로 보강된 철근콘크리트 벽체의 방호성능 평가)

  • Lee, Kun-Ho;Kim, Jae-Min;Kim, Jae Hyun;Lee, Sang-Hoon;Kim, Kang Su
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.5
    • /
    • pp.151-160
    • /
    • 2022
  • Owing to the recent increase in the frequency of explosion accidents, blast resistive design has garnered attention to reduce the damage of important structural elements. However, domestic research on the blast resistive structures is still insufficient, and domestic design guideline against blast loads are not documented yet. In this study, a numerical study on the RC blast resistive walls, where the test variable was the presence of FRP sheet, was performed using LS-DYNA program. Based on the numerical results, displacement-time hysteretic curve, pressure-impulse diagram, and fragility curve of the test specimens were derived. It was shown that the FRP sheet strengthening method is efficient to improve the blast resistive performance of the RC wall. Also, the strengthening effect of FRP sheet on the RC wall was stronger when the magnitude of the blast load was greater.

Methodology Study of Design Related to Accidental Explosion of Simple Explosive Storage Facility (화약류 간이저장소의 우발적 폭발을 고려한 안전설계 방법 연구)

  • Jung-Gyu, Kim;Seung-Won, Jung;Jun-Ha, Kim;Byung-Hee, Choi
    • Explosives and Blasting
    • /
    • v.40 no.4
    • /
    • pp.1-14
    • /
    • 2022
  • To review the appropriateness of current regulations on the simple explosive storage facility, the effects of internal explosion on the structural stability of the standard storage facility were analyzed by means of both FEM analyses and field experiments. As a result, it was found that the explosion-proof performance of the existing storage structure was not sufficient for 15 kg of emulsion-type explosive. Thus, an alternative method of splitting explosives was tested by conducting sympathetic detonation experiments. This method worked properly as expected, and the proper amount of splitted explosive was determined according to the test results. In addition, a storage structure with open ceiling was found to be very effective because explosion pressure was released so rapidly that the damage of the facility could be reduced significantly. Hence, such a structural pattern was proposed as a new design scheme for simple explosive storage facility.