• Title/Summary/Keyword: 폭발 압력

Search Result 332, Processing Time 0.03 seconds

Measurements on Effects of Locations of Obstacles in an Explosion Chamber

  • Han, Jae-Beom;Lee, Young-Soon;Park, Dal-Jae
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.3
    • /
    • pp.68-74
    • /
    • 2008
  • Measurements were performed to investigate the effects on flame and pressure development by varying locations of multiple obstacles in a top-venting explosion chamber. The chamber dimension was 1000 mm in height with a $700\;{\times}\;700\;mm^2$ cross-section and a rectangular vent area of $700\;{\times}\;700\;mm^2$. Three different multiple obstacles with blockage ratio of 30% were used by changing from 200 mm, 500 mm to 800 mm in heights within the chamber. Temporally resolved flame front images were recorded by a high speed camera to investigate the interaction between the propagating flame and the obstacles. The results showed that the triangular bar caused the fastest flame developments at given times whereas the lowest was obtained with the cylindrical bar. It was also found that local flame displacement speeds of different obstacles were sensitive to the locations of obstacles. The local speed becomes larger in going from 200 mm, to 500 mm and to 800 mm in heights. The obstacles in height of 800 mm yielded the highest overpressure whereas the lowest was in height of 200 mm.

  • PDF

An Evaluation of Blast Resistance Performance of RC Columns According to the Shape of Cross Section (단면의 형상에 따른 철근콘크리트 기둥의 폭발저항 성능 평가)

  • Kim, Han-Soo;Park, Jae-Pyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.4
    • /
    • pp.387-394
    • /
    • 2010
  • The alternative load path method based on a column removal scenario has been commonly used to protect building structures from being progressively collapsed due to probable blast loading. However, this method yields highly conservative result when the columns still have substantial load resisting capacity after blast. In this study, the behavior of RC columns with rectangular and circular sections under the blast loading was investigated and the remaining capacity of the partially damaged columns was compared. AUTODYN which is a hydrocode for the analysis of the structure on the impact and blast loading was used for this study. The blast loading was verified with the experiment results. The analysis results showed that the circular columns are preferable to the rectangular ones in respect of the blast resistance performance.

Blast Analysis and Damage Evaluation for Reinforced Concrete Building Structures (RC Building 구조물의 폭발해석 및 손상평가)

  • Park, Yang Heum;Yun, Sung-Hwan;Jang, Il Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.4
    • /
    • pp.331-340
    • /
    • 2021
  • The blast damage behavior of reinforced concrete (RC) structures exposed to unexpected extreme loading was investigated. To enhance the accuracy of numerical simulation for blast loading on RC structures with seven blast points, the calculation of blast loads using the Euler-flux-corrected-transport method, the proposed Euler-Lagrange coupling method for fluid-structure interaction, and the concrete dynamic damage constitutive model including the strain rate-dependent strength and failure models was implemented in the ANSYS-AUTODYN solver. In the analysis results, in the case of 20 kg TNT, only the slab member at three blast points showed moderate and light damage. In the case of 100 kg TNT, the slab and girder members at three blast points showed moderate damage, while the slab member at two blast points showed severe damage.

Design of Integration Controller of Explosive Proof Panel (방폭 패널 통합 제어기 설계)

  • Bak, Gwi-Man;Bae, Young-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.2
    • /
    • pp.267-272
    • /
    • 2020
  • Currently, the petrochemical industry complex always has remained with the explosive riskiness due to explosive and inflammable gases. In order to prevent explosion, all kind of equipment or facility including controller and its panel requires explosive proof. The control panel, which is currently used as explosive proof, has been used as the air injection method by manually from outside to constantly keep the temperature and pressure between inside and outside of the panel. In this paper, we propose the design of integrated controller of explosive proof panel which can control pressure and temperature automatically.

Blast Analysis for RC Structures using Cluster Parallel Algorithm (Cluster Parallel Algorithm을 이용한 RC 구조물 폭발해석)

  • Park, Jae-Won;Yun, Sung-Hwan;Tak, Moon-Ho;Park, Tae-Hyo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.660-663
    • /
    • 2011
  • 폭발하중은 매우 짧은 시간 내에 순간적인 높은 압력으로 발생된다. 따라서 폭발하중을 받는 구조물은 매우 복잡한 순간 동역학적 손상 거동을 나타낸다. 이러한 외부 하중에 대한 실험적 연구는 큰 비용, 시설, 그리고 군사적 보안 문제가 요구되기 때문에, 고성능 컴퓨팅 기술을 이용한 수치적 기법을 통해 구조물의 동적 비선형 해석을 수행하였다. 수치해석의 정확성을 높이기 위해 폭풍파와 같은 대기전파의 경우 Euler 기법, 콘크리트 재료의 경우 Lagrange 기법을 적용한 복합적 수치해석 (multi-solver coupling) 기법이 적용되었다. 제안된 수치해석 기법은 explicit 유한요소해석 프로그램인 AUTODYN을 이용하여 수행되었다. 그리고 클러스터 (cluster) 내 병렬 알고리즘 (parallel algorithm)을 이용하여 수치해석의 효율성을 높였다. RC 구조물의 수치해석 결과, 기존 실험 결과와 비교하여 잘 일치되었다. 또한 영역분할 개수가 증가할수록 수행시간은 감소되었고 Speed-up과 효율성은 높아졌다.

  • PDF

Structural Safety Assessment of Offshore Structure under Explosion Loadings (해양구조물의 폭발하중에 의한 구조 안전성 평가 기법 연구)

  • Lee, Sang-Gab;Cho, Heon-Il;Hong, Anh;Kim, Jin-Kyung;Kim, Gyu-Sung;Lee, Kun-Hee
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.203-208
    • /
    • 2011
  • 본 논문에서는 해양시추 생산설비의 상부구조(topside structure)에 설치된 공정설비(process module)에서 가스 누출에 의한 가스폭발 하중에 대한 해양구조물의 비선형 동적 거동응답 특성파악을 파악하기 위하여 LS-DYNA 코드의 유체-구조 연성(Fluid-Strycture Interaction) 해석기법을 적용하여 폭발 압력파를 보다 정확하게 구현하기 위한 기법을 개발하고자 한다.

  • PDF

Experimental Evaluation of Bi-directionally Unbonded Prestressed Concrete Panel Blast Resistance Behavior under Blast Loading Scenario (폭발하중 시나리오에 따른 2방향 비부착 프리스트레스트 콘크리트 패널부재의 폭발저항성능에 대한 실험적 거동 평가)

  • Choi, Ji-Hun;Choi, Seung-Jai;Cho, Chul-Min;Kim, Tae-Kyun;Kim, Jang-Ho Jay
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.6
    • /
    • pp.673-683
    • /
    • 2016
  • In recent years, frequent terror or military attack by explosion, impact, fire accidents have occurred. Particularly, World Trade Center collapse and US Department of Defense Pentagon attack on Sept. 11 of 2001. Also, nuclear power plant incident on Mar. 11 of 2011. These attacks and incidents were raised public concerns and anxiety of potential terrorist attacks on major infrastructures and structures. Therefore, the extreme loading researches were performed of prestressed concrete (PSC) member, which widely used for nuclear containment vessel and gas tank. In this paper, to evaluate the blast resistance capacity and its protective performance of bi-directional unbonded prestressed concrete member, blast tests were carried out on $1,400{\times}1,000{\times}300mm$ for reinforced concrete (RC), prestressed concrete without rebar (PSC), prestressed concrete with rebar (PSRC) specimens. The applied blast load was generated by the detonation of 55 lbs ANFO explosive charge at 1.0 m standoff distance. The data acquisitions not only included blast waves of incident pressure, reflected pressure, and impulse, but also included displacement, acceleration, and strains at steel, concrete, PS tendon. The results can be used as basic research references for related research areas, which include protective design and blast simulation under blast loading.

Parametric Study on Reinforced Concrete Columns under Blast Load (주철근의 개수 및 단면비에 따른 폭발하중을 받는 철근콘크리트 기둥의 해석적 연구)

  • Choi, Hosoon;Kim, Min-Sook;Lee, Young-Hak
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.3
    • /
    • pp.219-226
    • /
    • 2012
  • Columns are the key elements supporting load in structure. Column failure causes the structure to collapse. It is important to evaluate residual strength for damaged columns under blast load for preventing progressive collapse. In this paper, columns were investigated to compare the blast resistance on the change of the number of steel bars within the range of reinforcement ratio. And this study was carried out 4 different analytical models to evaluate effects of aspect ratio. The results indicate that the vertical strain was unaffected by the number of steel bars and aspect ratio. As the number of steel bars facing blast load increase, the blast resisting capacity of the columns was improved in the lateral strain. Also, the analysis results showed that a large moment of inertia of area, as compared to a small one would be superior in residual strength as well as force of restitution.

A study on the Prediction of Explosion Risk for the Low Pressure Natural Gas Facilities with Different Explosion Conditions (저압 도시가스 사용설비의 누출 조건에 따른 폭발 위험 분위기 형성 범위 예측에 관한 연구)

  • Han, Sangil;Lee, Dongwook;Hwang, Kyu-Suk
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.3
    • /
    • pp.59-65
    • /
    • 2016
  • It is imperative to use suitable explosion proof equipments to prevent explosion in different gas facilities. There is no technical standard for the classification of hazardous areas though standard of explosion proof is regulated. In this study, we have adopted Industrial Standard KS to develop the methodology for the prediction of the explosion risk in the natural gas facility with low pressure using the important factors including hole size, hypothetical volume, validation of ventilation effectiveness. The applicability of the developed methodology was evaluated by the comparison with the data obtained from experiments of natural gas explosion.

Safety Evaluation of Non-refillable Butane Can Equipped with Relief Valve for Prevention of Explosion (안전밸브가 장착된 휴대용 부탄캔에 대한 안전성 평가 연구)

  • Kang, Seung-Kyu;Choi, Kyung-Suhk
    • Journal of Energy Engineering
    • /
    • v.17 no.4
    • /
    • pp.212-217
    • /
    • 2008
  • This study carried out the safety evaluation of non-refillable butane can for portable gas range equipped with relief valve for prevention of explosion. The can is heated by electric heater at the real using condition and the extreme condition after installing at a portable gas range for checking the operating pressure and the evaluating suitability of releasing flux. And the possibility of fire or explosion was tested when the gas was released from the relief valve at the real condition. As a result of this safety evaluation test, a non-refillable butane can with relief valve prevents the can from exploding by control of internal pressure.