• Title/Summary/Keyword: 폭발압력 전파

Search Result 43, Processing Time 0.031 seconds

Effect of the Obstacles on Explosion Pressure and Propagation Velocity in Closed Tube (밀폐배관 내의 장애물에 의한 폭발압력과 화염전파속도의 영향)

  • Han, Ou-Sup;Lee, Jung-Suk
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.3
    • /
    • pp.20-26
    • /
    • 2020
  • In this study, experimental study was conducted to examine the influence of explosion pressure and flame propagation velocity of methane-air mixtures due to the obstacles placed in the explosion space. We used the quantified parameter named barrier ratio in order to generalize the effect of explosion pressure and flame propagation velocity in the closed explosion space with obstacles. From experimental observations, the explosion pressure and flame propagation velocity regardless of the number of obstacles increased with barrier ratio. In the same methane concentration of 10% methane, the flame propagation velocity without obstacle (barrier ratio = 0) was 3.46 m/s but 24.24 m/s (increase about 7 times) with 3 obstacle and barrier ratio of 0.98. In the same barrier ratio, explosion pressure and flame propagation velocity increased sharply with increasing of the number of obstacles.

수치계산을 통한 증기폭발 전파과정 해석

  • 박인규;박준철;방광현
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.05a
    • /
    • pp.531-537
    • /
    • 1995
  • 본 논문에서는 증기폭발의 전파과정을 해석하기 위한 수학적 모델을 제시하였다. 이 모델은 용융물, 용융파편, 그리고 냉각재 기상과 액상 둥 4상 유체의 2차원적인 천이거동을 지배방정식 및 관련상관식의 수치적 해를 구함으로써 증기폭발의 전파속도 및 폭발압력 등을 예측할 수 있다. 모델에 사용된 주요 상관식은 용융물 분쇄, 냉각재 상변화, 에너지 교환, 그리고 운동량 교환함으로 구성되어 있다. 냉각재의 상태를 결정하는데 있어서 냉각재의 기상과 액상 사이의 열역학적인 비평형을 허용할 수 있도록 냉각재의 상태방정식을 구성하였다. 주석/물의 증기폭발에 대한 예제계산을 수행한 결과 폭발의 전파속도 및 압력 등에 있어서 합당한 것으로 밝혀졌다. 또한 중요한 초기변수(중기 분율, 용융물 분율) 및 관련상관식에 대한 민감도 분석을 수행함으로써 모델개선을 위한 중요인자를 제시하였다.

  • PDF

Explosion Phenomena and Energy Transformation (폭발현상과 에너지변환)

  • 윤재건
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1998.05a
    • /
    • pp.87-94
    • /
    • 1998
  • 폭발현상(explosion phenomena)이 항상 연소(combustion)를 수반하는 것도 아니고, 연소현상이 항상 폭발적으로 일어나는 것이 아님에도 불구하고 많은 사람들은 폭발과 연소 사이에 밀접한 관계가 있는 것으로 생각하고 있다. 일반적으로 폭발이라고 하면 우선 큰 소리와 건물이나 실내의 파괴를 연상한다. 폭발 시에 발생하는 큰소리, 이른바 폭발음은 공기 중을 전파하는 압력파(blast wave)에 의한 것이고 건물이나 실내 파괴는 그들의 내부압력 상승에 의한 것이다. 그러므로 폭발현상은 압력상승과 불가분하다고 생각해도 된다. (중략)

  • PDF

Characteristics of Flame Propagation Velocity in Mg and Al Alloy Dust Clouds (마그네슘합금 분진폭발에서의 화염전파속도 특성)

  • Han, Ou-Sup;Lee, Keun-Won
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.19-22
    • /
    • 2012
  • 본 연구에서는 폭발사고가 반복되고 있는 마그네슘합금(Mg-Al alloy) 분진의 예방대책을 위한 안전자료로 활용하기 위하여 폭발특성평가 실험과 화염전파속도를 추정하였다. 화염전파속도는 폭발과압 강도에 영향을 주지만 분진폭발에서는 화염의 확산에 따른 피해예측에도 중요한 자료로 활용될 수 있다. 밀폐공간의 분진폭발에서 화염전파속도를 계산하기 위하여 분진의 연소시간과 화염면의 도달시간을 고려하여 폭발압력으로부터 추정하는 방법을 제시하고 마그네슘합금의 성분비율에 따라 폭발에 따른 화염전파속도를 계산하였다. 그 결과, Mg-Al(60:40 wt%), Mg-Al(50:50 wt%), Mg-Al(40:60 wt%)의 최대화염전파속도는 각각 15.5, 18, 15.2 m/s로 추정되었으며 성분비율에 따라 최대화염속도는 변화하는 경향을 나타냈다.

  • PDF

A study on numerical analysis of the accidental gas explosion (수치해석에 의한 가스폭발사고 분석)

  • ;V.M.Poutchcov
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1998.05a
    • /
    • pp.145-152
    • /
    • 1998
  • 실내에서 가스폭발시 피해를 예측하기 위해서 폭발 화염면의 전파를 수치해석을 통해 해석했다. 확산방정식에 의해 가스누출에 의한 실내의 가스확산분포를 구했으며 문헌에서 선택한 누출의 초기조건을 사용했다. 화염온도를 계산하기 위해 각 가스 혼합비에 따른 엔탈피와 화학식에 대한 reduced mechanism을 사용했으며 문헌에서 찾은 각 가스의 농도별 층류 연소속도를 혼합가스의 층류연소속도에 적용시켰다. k-$\varepsilon$ 모델에서 turbulance energy를 층류연소속도와 결합시켜 난류화염 전파속도를 모델링 했다. 화염면의 전파를 분석하기 위해 실내의 위치에는 직각, 화염면의 전파에는 원통좌표계를 사용했다. 유리창의 파손에 의한 화염전파면의 변화에 따른 압력상승 요인을 해석하였으며 창문의 크기에 따라서 점화위치에 따른 실내 압력상승의 영향이 서로 다르게 나타나는 결과를 얻었다.

  • PDF

Properties of Explosion and Flame Velocity with Content Ratio in Mg-Al Alloy Particles (마그네슘합금의 조성비율에 따른 폭발 및 화염전파 특성)

  • Han, Ou-Sup;Lee, Keun-Won
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.4
    • /
    • pp.32-37
    • /
    • 2012
  • The aim of this study is to evaluate the characteristics of explosion and flame velocity that can be utilized to factories where Mg-Al alloy metal powders are handled in the form of raw materials, products or by-product for similar dust explosion prevention and mitigation. Because the strength of the blast pressure is the result due to flame propagation, flame velocity in dust explosion can be utilized as a valuable information for damage prediction. An experimental investigation was carried out on the influences of content ratio of Mg-Al alloy (mean particle size distribution of 151 to 161 ${\mu}m$). And a model of flame propagation velocity based on the time to peak pressure and flame arrival time in dust explosion pressure, assuming the constant burning velocity, leads to a representation of flame velocity during dust explosion. As the results, the maximum flame velocity of Mg-Al(60:40 wt%), Mg-Al(50:50 wt%) and Mg-Al(40:60 wt%) was estimated 15.5, 18 and 15.2 m/s respectively, and also tend to change with content ratio of Mg-Al.

Estimates of Surface Explosion Energy Based on the Transmission Loss Correction for Infrasound Observations in Regional Distances (인프라사운드 대기 전파 투과손실 보정을 통한 원거리 지표폭발 에너지 추정)

  • Che, Il-Young;Kim, Inho
    • Journal of the Korean earth science society
    • /
    • v.41 no.5
    • /
    • pp.478-489
    • /
    • 2020
  • This study presents an analysis of infrasonic signals from two accidental explosions in Gwangyang city, Jeonnam Province, Korea, on December 24, 2019, recorded at 12 infrasound stations located 151-435 km away. Infrasound propagation refracted at an altitude of ~40 km owing to higher stratospheric wind in the NNW direction, resulting in favorable detection at stations in that direction. However, tropospheric phases were observed at stations located in the NE and E directions from the explosion site because of the strong west wind jet formed at ~10 km. The transmission losses on the propagation path were calculated using the effective sound velocity structure and parabolic equation modeling. Based on the losses, the observed signal amplitudes were corrected, and overpressures were estimated at the reference distance. From the overpressures, the source energy was evaluated through the overpressure-explosive charge relationship. The two explosions were found to have energies equivalent to 14 and 65 kg TNT, respectively. At the first explosion, a flying fragment forced by an explosive shock wave was observed in the air. The energy causing the flying fragment was estimated to be equivalent to 49 kg or less of TNT, obtained from the relationship between the fragment motion and overpressure. Our infrasound propagation modeling is available to constrain the source energy for remote explosions. To enhance the confidence in energy estimations, further studies are required to reflect the uncertainty of the atmospheric structure models on the estimations and to verify the relationships by various ground truth explosions.

Explosion Characteristics by Different Sizes in the Wall Surface Shape of a Water Gel Barrier (Water Gel Barrier 표면형상의 크기에 따른 폭발특성)

  • Park, Dal-Jae;Kim, Nam-Il
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.3
    • /
    • pp.65-70
    • /
    • 2012
  • Experimental investigations were carried out to examine the explosion characteristics by different sizes in the wall surface shape of a water gel barrier in an explosion chamber, 1,600 mm in length with a square cross-section of $100{\times}100\;mm^2$. The sizes in the wall surface shape were varied by using water gel barriers with a cross-section of $100{\times}200\;mm^2$ and its were varied in the bottom of the chamber away 300, 700 and 1,100 mm, respectively from the closed end of the chamber. The flame propagation images were photographed with a high speed camera and the pressure was recorded using a pressure transducer and a data acquisition system. It was found that as the size of the wall surface shape increased, the flame propagation process and the time taken to reach the maximum pressure were found to be faster. As a result, both the flame speed and the explosion overpressure increased as the size of the wall surface shape increased.

Explosion Characteristics and Flame Velocity of Suspended Plastic Powders (플라스틱 부유 분진의 폭발특성과 화염전파속도)

  • Han, Ou Sup;Lee, Keun Won
    • Korean Chemical Engineering Research
    • /
    • v.54 no.3
    • /
    • pp.367-373
    • /
    • 2016
  • Many of plastic powders handled in industry are combustible and have the hazard of dust fire and explosion accidents. However poor information about the safe handling has been presented in the production works. The aim of this research is investigated experimentally on explosive characteristics of various plastic powders used in industry and to provide additional data with safety informations. The explosibility parameters investigated using standard dust explosibility test equipment of Siwek 20-L explosion chamber. As the results, the dust explosion index ($K_{st}$) of ABS ($209.8{\mu}m$), PE ($81.8{\mu}m$), PBT ($21.3{\mu}m$), MBS ($26.7{\mu}m$) and PMMA ($14.3{\mu}m$) are 62.4, 59.4, 70.3, 303 and 203.6[$bar{\cdot}m/s$], respectively. And flame propagation velocity during plastic dust explosions for prediction of explosive damage was estimated using a flame propagation model based on the time to peak pressure and flame arrival time in dust explosion pressure assuming the constant burning velocity.

Explosion Hazards and Flame Velocity in Aluminum Powders (알루미늄 분체의 폭발위험성과 화염전파속도)

  • Han, Ou-Sup;Lee, Su-Hee
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.5
    • /
    • pp.7-13
    • /
    • 2012
  • An experimental study has been done to investigate the explosion characteristics of aluminum powders with different sizes and concentrations in a 20 L spherical explosion vessel. Two different sizes of aluminum powder were used : $15.1{\mu}m$ and $34.8{\mu}m$ with a volume mean diameter. The results revealed that $15.1{\mu}m$ Al powder has a Lower explosion limit (LEL) of $40g/m^3$, a maximun explosion pressure ($P_{max}$) of 9.8 bar and a maximum rate of pressure rise ($[dP/dt]_{max}$) of 1852 bar/s, in $34.8{\mu}m$ Al powder, LEL of $70g/m^3$, $P_{max}$ of 7.9 bar and $[dP/dt]_{max}$ of 322 bar/s. The LEL of Al powders tended to increase with the increase of particle size. Also, it was found that the flame velocity calculated from the powder with $15.1{\mu}m$ was about 5 times higher than that of the powder of $34.8{\mu}m$.