• Title/Summary/Keyword: 폭발실험

Search Result 567, Processing Time 0.034 seconds

Experimental Investigation on the Vapor Explosions with Water/R22 (Water / R22 폭발실험수행을 통한 증기폭발에 관한 연구)

  • Park, I.K.;Park, G.C.
    • Nuclear Engineering and Technology
    • /
    • v.26 no.2
    • /
    • pp.257-264
    • /
    • 1994
  • Experimental studies hate been peformed to investigate vapor explosion phenomena which may threaten the containment integrity during severe accidents in nuclear power plants. In this study, experimental equipment is constructed for vapor explosion experiments, and the vapor explosion experiments were conducted using water/R22. During the experiments, water/R22 interaction phenomena were observed using the high speed camera, and the explosion pressure and released mechanical energy were measured with pressure transducer and pressure relief tube. And the effects of some important parameters-hot liquid temperature, hot liquid injection velocity, hot liquid injection velocity, hot liquid injection time, and cold liquid depth-were investigated on the vapor explosion. Also, the experiment with grid was conducted to study reactor -vessel-lower-structure effect on fuel/coolant interaction. Water/R22 explosion conversion ratios were measured between 0.5∼1.6%.

  • PDF

Explosion Characteristics of Bituminous Coal Dusts in Cement Manufacturing Process (시멘트 제조공정에서 유연탄 분진의 폭발특성)

  • Kim, Won-Hwai;Lee, Seung-Chul;Seung, Sam-Sun;Kim, Jin-Nam
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.2
    • /
    • pp.257-263
    • /
    • 2008
  • We have examined explosion characteristics of bituminous coal dusts in cement manufacturing process. In order to find the thermal properties, we investigated weight loss and ignition temperature of coal materials using TGA and DSC. Also specific surface area of dust was investigated. Dust explosion experiments with Hartman's dust explosion apparatus have been conducted by varying concentration and size of coal dust for explosion probability and lower limit explosion concentration. According to the results for thermal properties, there is a little change by dust size. However, the specific surface area of dust is increased by decreasing dust size. The explosion test results show that small size and increasing concentration of dusts make dust explosion easier. And we find that the lower limit explosion concentration of bituminous coal is $0.3mg/cm^3$ and the probability is 100% on $0.9mg/cm^3$ in 170/200 mesh used in cement manufacturing process.

A Study on the Comparison of Explosive Lower Limit Concentration & Thermal Specific of Wheat Powder Dust & Salicylic Acid Dust (밀가루분진 및 살리실산분진의 폭발하한농도 및 열적특성 비교에 관한 연구)

  • Ko, Jae-Sun
    • Fire Science and Engineering
    • /
    • v.26 no.4
    • /
    • pp.1-9
    • /
    • 2012
  • We have examined In order to compare each other from explosion and combustion characteristics about the dusts which collects from manufacturing process of wheat flour and cosmetics manufacturing process of functional Keratin removal soap at the small and medium enterprise style. We measured explosive pressure and explosive lower limit which follows in change of concentration change at the time of talc addition uses Hartman dust explosion apparatus, also measured weight loss and endothermic quantity uses DSC and TGA. The explosion test results show that increased explosive lower limit concentration and explosive pressure decreased by the increased ratio of the talc dust. And the DSC results show that heat flux and temperature decreased by the increased ratio of the talc dust. Also increased in raising temperature causes initial smoldering temperature to move towards low temperature section and the endothermic quantity increased on a large scale. Together the TGA results show that weight loss decreased by the increased ratio of the talc dust. From this research we have assured the successive dust explosion mechanism study will play a key role as a significant safety securing guideline against the dust explosion.

Experimental and Numerical Study on the Mitigation of High Explosive Blast using Shear Thickening based Shock-Absorbing Materials (전단농화유체기반의 충격완화물질을 이용한 고폭속 폭약의 폭발파 저감에 관한 실험 및 수치해석적 연구)

  • Younghun Ko
    • Explosives and Blasting
    • /
    • v.41 no.3
    • /
    • pp.1-12
    • /
    • 2023
  • A basic assessment of techniques to mitigate the risk of blast shock waves from proximity explosions was conducted. Common existing techniques include using mitigant materials to form barriers around the explosive or in the direction of propagation of the shock wave. Various explosive energy dissipation mechanisms have been proposed, and research on blast shock wave mitigation utilizing impedance differences has drawn considerable interest. In this study, shear thickening fluid (STF) was applied as a blast mitigation material to evaluate the effectiveness of STF mitigation material on explosion shock wave mitigation through explosion experiments and numerical analysis. As a result, the effectiveness of the STF mitigant material in reducing the explosion shock pressure was verified.

폐목재 재활용 분진의 화재폭발위험성

  • Lee, Su-Hui;Han, U-Seop;Han, In-Su
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.115-115
    • /
    • 2013
  • 최근의 분진폭발은 플라스틱, 의약품, 목재, 곡물 저장고, 고체연료, 화학제품 제조공정 등을 포함하여 성형 및 가공 공정 등에서 화재폭발사고가 발생되고 있다. 폐목재를 재활용하여 PB(Particle board)를 생산하는 국내 제조사업장에서는 화재폭발 사고가 빈번히 발생하고 있어 예방대책이 요구되고 있다. 본 연구에서는 폐목재 제조공정의 사고예방과 목재분진 취급공정에 대한 안전대책 등을 제시하기 위하여 사고원인 물질인 폐목재 부유분진의 폭발특성실험을 실시하고 실험결과를 검토하였다. 또한 폐목재 분진의 화재폭발위험성을 상세히 평가하기 위하여 해당 물질의 자연발화점, 축열저장시험, 및 최소점화에너지 등의 화재폭발위험특성값을 실험적으로 조사하였다. 본 연구에서 사용한 폐목재 시료의 비구형 입자형태를 가지는데 입도분석기의 측정 결과 평균 입경은 $15.96{\mu}m$로 조사되었다. 또한 목재 분진의 함수율은 3.88%이며 중금속함유량은 1.73%이다. 자연발화점 측정결과 $225.5^{\circ}C$로서 비교적 낮게 측정되었고 퇴적분진에 대한 화재의 위험성은 높게 나타났다. 반면에 축열저장시험 결과를 통하여 공정관리 온도 및 보관온도를 $150^{\circ}C$ 이하로 관리하면 축열에 의한 자기분해 위험성은 낮은 것으로 판단되었다. 그러므로 축열에 의한 화재폭발 등의 위험성은 낮은 것으로 사료 된다. 최대폭발압력($P_{max}$)은 8.7 bar이며 폭발하한농도 (LEL)는 $60g/m^3$으로 나타났다. 부유분진의 폭발특성실험 결과 분진폭발지수(Kst)는 폭발등급 St 1 (0$bar{\cdot}m/s$)으로 나타났으며 폭발에 의한 위험성이 약한 분진으로 판정되었다. 최소점화에너지(MIE)는 10mJ < MIE <30mJ의 범위로 측정되었으며, 계산에 의해 추정된 최소점화 에너지(Es) 값은 14 mJ로서 일반적인 발화감도(Normal ignition sensitive)로 분류되었다. 이는 실질적인 점화원만 제거하여도 분진폭발을 예방할 수 있다는 것을 의미한다. 그러나 분진 폭발사고를 예방을 위하여 MIE값이 공정운전온도 $100^{\circ}C$ 초과 시에 급격히 낮아질 수 있으므로 운전 온도 설정에 있어서 주의가 필요하다.

  • PDF

Experimental Study to Improve Blast-resistant Performance according to Concrete Type and Retrofitting Method (콘크리트의 종류 및 보강방법에 따른 폭발저항성 개선에 대한 실험적 연구)

  • Choi, Jong-Kwon;Cho, Yun-Gu;Park, Dae-Gyun;Lee, Na-Hyun;Kim, Jang-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.239-240
    • /
    • 2009
  • Through the test of concrete panel, we evaluate quantitatively the blast resistance performance of concrete structure. In this blast test, eight different panels were tested and the main variables are concrete strength(200 MPa, 24 MPa) and retrofitting materials(CFRP, PolyUrea, BFRP).

  • PDF

Experimental and Numerical Studies on Application of Industrial Explosives to Explosive Welding, Explosive Forming, Shock Powder Consolidation (산업용 폭약을 이용한 폭발용접, 폭발성형과 충격분말고화에 관한 실험 및 수치해석적 연구)

  • Kim, Young-Kook;Kang, Seong-Seung;Cho, Sang-Ho
    • Tunnel and Underground Space
    • /
    • v.22 no.1
    • /
    • pp.69-76
    • /
    • 2012
  • Theoretical backgrounds on the experimental methods of explosive welding, explosive forming and shock consolidation of powders are introduced. Explosive welding experiments of titanium (Ti) and stainless steel (SUS 304) plate were carried out. It was revealed that a series of waves of metal jet are generated in the contact surface between both materials; and that the optimal collision velocity and collision angle is about 2,100~2,800 m/s and $15{\sim}20^{\circ}$, respectively. Also, explosive forming experiments of Al plate were performed and compared to a conventional press forming method. The results confirmed that the shock-loaded Al plate has a larger curvature deformation than those made using conventional press forming. For shock consolidation of powders, the propagation behaviors of a detonation wave and underwater shock wave generated by explosion of an explosive are investigated by means of numerical calculation. The results revealed that the generation and convergence of reflected waves occur at the wall and center position of water column, and also the peak pressure of the converged reflected waves was 20 GPa which exceeds the detonation pressure. As results from the consolidation experiments of metal/ceramic powders ($Fe_{11.2}La_2O_3Co_{0.7}Si_{1.1}$), shock-consolidated $Fe_{11.2}La_2O_3Co_{0.7}Si_{1.1}$ bulk without cracks was successfully obtained by adapting the suggested water container and strong bonding between powder particles was confirmed through microscopic observations.

A Study on the Relationship of Explosion Characteristics and Combustion Heat of Gas Mixtures (가스 혼합물의 폭발압력과 연소열의 상관관계 연구)

  • Oh Khy-hyung;Kim Hong;Yoo Joo-hyun;Kim Tae-Jin
    • Journal of the Korean Institute of Gas
    • /
    • v.1 no.1
    • /
    • pp.49-55
    • /
    • 1997
  • Destruction phenomena of structure by gas explosion is due to the explosion pressure and heat. Explosion pressure is a kind of energy converted from the gas mixture explosion. In this paper, we tried to find the relationship between explosion characteristics and combustion heat of the hydrocarbon-oxygen mixtures. Experiment were carried out with the volume of $5916cm^3$ cylindrical explosion vessel. Hydrocarbon gases which used in this study were methane, ethylene, propane, and buthane Experimental parameter was the concentration of the gas mixtures. Explosion characteristics were measured with strain type pressure transducer through the digital storage oscilloscope. From the experimental result, it was found that explosion pressure depend upon the combustion heat.

  • PDF

A study of dust explosion about stock feed (사료분진의 폭발특성에 관한 연구)

  • Hong, Hyeon-Gyeong;Sa, Min-Hyeong;Lee, Hong-Ju;Kim, Yun-Seon;U, In-Seong
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2010.11a
    • /
    • pp.277-281
    • /
    • 2010
  • 본 연구에서는 사료분진의 폭발 특성을 연구하여 분진에 의한 폭발사고 위험을 감소시키고 방지대책에 필요한 기초자료를 제공하기 위해 Hartman1)식 분진폭발장치를 사용하여 다양한 사료를 실험하였다. 실험결과로 사료농도가 폭발확률에 미치는 영향은 농도가 높을수록, 사료분진의 입경이 작을수록 폭발확률이 커지고 분진농도가 증가할수록 폭발압력이 증가하였으나 일정농도를 넘어서면 오히려 폭발압력이 감소하는 경향을 보였으며 불활성물질을 첨가할 경우에는 10%이상 첨가할 경우에 폭발억제 효과를 보였다.

  • PDF

Explosion Risk of 2-Ethylhexanoic Acid (2-Ethylhexanoic Acid의 폭발위험성에 관한 연구)

  • Kim, Won-Kil;Kim, Jung-Hun;Choi, Jae-Wook
    • Fire Science and Engineering
    • /
    • v.29 no.6
    • /
    • pp.20-25
    • /
    • 2015
  • In order to examine the explosion risk of 2-ethylhexanoic acid, we experimentally studied the explosion limit, explosion pressure, and rate of increase of the explosion pressure at different oxygen concentrations. The lower explosion limit was 3.2% at a temperature of $100^{\circ}C$, and the oxygen concentration was 40 to 70%. The upper explosion limit was 4.5% and the lower explosion limit was 4.0% at an oxygen concentration of 21%.The maximum explosion pressure of 2-ethylhexanoic acid was 1.4161 MPa at an oxygen concentration of 70%, and the rate of increase of the explosion pressure was 62.692 MPa/s at this concentration.