• Title/Summary/Keyword: 포화도

Search Result 4,147, Processing Time 0.036 seconds

Modification of TOPMODEL Considering Spatial Connectivity of Saturated Area (공간적 포화면적의 공간적 연결을 고려한 TOPMODEL의 개선과 적용)

  • Kim, Sang-Hyeon;Kim, Gyeong-Hyeon
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.5
    • /
    • pp.515-524
    • /
    • 1999
  • A methodology to resolve a TOPMODEL problem has been suggested, which is associated with the spatial distribution of soil moisture behaviour in a runoff mechanism. A procedure to integrate the spatial information of saturation deficit in the TOPMODEL reflects the connectivity of saturated area in a watershed. The developed algorithm includes an improved basis in tracing the runoff path without increasing the number of parameters. The performance of the developed algorithm has been tested to an upland subwatershed, namely Dongok, which is the IHP watershed located at Wichon, Korea. Comparing with the original statistical version of the TOPMODEL, it has been found that the suggested algorithm can relax an overestimation of peak rate in the runoff simulation.

  • PDF

Experimental Verification on the Availability of Robust Saturation Controller for the Active Vibration Control of Building using AMD (AMD를 이용한 건물의 능동 진동 제어를 위한 강인 포화 제어기의 유용성에 관한 실험적 검증)

  • Lim, Chae-Wook;Moon, Seok-Jun;Park, Youn-Gjin
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.2 s.48
    • /
    • pp.83-90
    • /
    • 2006
  • In active vibration control of building, controller design considering both control input saturation of controller and parameter uncertainties of building is needed. In our previous research, we proposed a robust saturation controller which guarantees robust stability and control performance of the uncertain linear time-invariant system in the presence of control input saturation. In this paper, the availability of the robust saturation controller for the building with an active mass damper (AMD) system is verified through experimental tests. Experimental tests are carried oui using a two-story building model with a hydraulic-type AMD.

Effects of Strain Rate and Water Saturation on the Tensile Strength of Rocks (변형률 속도 및 수분포화가 암석의 인장강도에 미치는 영향)

  • Jung, Woo-Jin
    • Tunnel and Underground Space
    • /
    • v.20 no.2
    • /
    • pp.119-124
    • /
    • 2010
  • Hopkinson's effect tests were carried out for various strain rates on three different types of rock in both saturated and dry states in order to examine the effects of strain rate and water saturation on tensile strength. The tensile strength increased with the increase of the strain rate not only in dry state but also in saturated state. It was also especially recognizable that the dynamic tensile strength of rock in the dry state was proportional to approximately a one-third multiple of strain rate no matter what the type of rock. It was found that water saturation decreased tensile strength in the dry state of sandstone and tuff, both with high porosity, but no significant difference could be recognized between the dry and the saturated states of granite, which has a low porosity of 0.49%.

Stability of Saturation Controllers for the Active Vibration Control of Linear Structures (선형 구조물의 능동 진동 제어를 위한 포화 제어기의 안정성)

  • Moon, Seok-Jun;Lim, Chae-Wook;Huh, Young-Chul
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.6 s.52
    • /
    • pp.93-102
    • /
    • 2006
  • Control input's saturation of active control devices for large structures under large external disturbances are often occurred. It is more difficult to obtain the exact values of mass and stiffness as structures are higher. The modelling errors between mathematical models and real structures must be also included as parameter uncertainties. Therefore, in active vibration control of civil engineering structures like buildings and bridges, the robust saturation controller design method considering both control input's saturation and parameter uncertainties of system is needed. In this paper, stabilities of linear optimal controller LQR, modified bang-bang controller, saturated sliding mode controller, and robust saturation controller among various controllers which have been studied and applied to active vibration control of buildings are investigated. Especially, unstable phenomena of the LQR, the modified bang-bang controller and the saturated sliding mode controller when the control input is saturated or parameter uncertainties exist are presented to show the necessity of the robust saturation controller. The robust stability of the robust saturation controller are shown through a numerical example of a 2DOF linear vibrating system and an experimental test of the two-story structure with an active mass damper (AMD).

Experimental Study on the Characteristics of CO2 Capture with Spray Towers Using Ammonia Solution (암모니아수 흡수제를 사용하는 분무탑의 이산화탄소 포집 기본특성에 관한 실험적 연구)

  • Lim, Youngbok;Choi, Munkyoung;Lee, Jinwon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.2
    • /
    • pp.165-172
    • /
    • 2014
  • Experiments were conducted to identify basic characteristics of $CO_2$ capture using a spray tower with a single nozzle. Results were evaluated in terms of $CO_2$ saturation which is the main determining factor of regeneration energy, and capture efficiency under various operating conditions. Changes in the capture efficiency under various conditions are well expressed as a monotone increasing function of the relative solvent $(NH_3):CO_2$ flow rate. Although changes in $CO_2$ saturation are also well described as a function of the $NH_3/CO_2$ flow rate ratio, these are expressed as a monotone decreasing function, in contrast with the increasing function of $CO_2$ efficiency. In recent research on the relationship between $CO_2$ saturation and capture efficiency, $CO_2$ saturation was found to decrease when capture efficiency increased. In conclusion, the results show that the amount of solvent used for achieving high capture efficiencies is excessive, as is the amount of regeneration energy needed.

Intravenous Iron Supplementation in Korean Children on Chronic Dialysis (한국 만성 투석 소아 환자에서 정맥용 철분 제제 투여에 관한 연구)

  • Cho, Hee-Yeon;Hahn, Hye-Won;Ha, Il-Soo;Cheong, Hae-Il;Choi, Yong
    • Childhood Kidney Diseases
    • /
    • v.13 no.2
    • /
    • pp.197-206
    • /
    • 2009
  • Purpose : Limited information is available on experiences of intravenous iron treatment in children. In this study, iron sucrose was administered intravenously to determine its effect, the factors predicting outcome, and safety in children on chronic dialysis. Methods : Twenty-one children whose serum ferritin levels were less than 100 ng/mL or transferrin saturations (TSAT) were less than 20% were enrolled. In 12 children on peritoneal dialysis (PD), the drug was infused intravenously as 200 mg/$m^2$ ($\leq$200 mg) at week 0, 2, 4, and 6. In 9 children on hemodialysis (HD), it was given intravenously as 8 weekly doses of 3 mg/kg ($\leq$100 mg) through week 0-7. Results : After treatment, serum ferritin levels increased significantly in both groups, and TSAT rose significantly in PD group. However, hemoglobin level did not rise significantly in both groups. Children with baseline hemoglobin less than 10 g/dL or baseline TSAT less than 20% showed significantly higher rise of hemoglobin after intravenous iron treatment. To the contrary, those with higher baseline hemoglobin and TSAT levels displayed higher rise in serum ferritin after the treatment. Although no serious adverse event occurred, TSAT levels exceeding 50% were noted in 6 patients in PD group. Conclusion : This suggests that 3 mg/kg/week of intravenous iron sucrose can be used safely in children on chronic HD, but 200 mg/$m^2$ every other week may incur excessive TSAT level in some patients on chronic PD.

A Study on the Conformity Assessment of Type Curve Models to Predict Production Performance in Coalbed Methane Reservoirs (CBM 저류층의 생산성 예측을 위한 표준곡선 모델의 적합성 평가 연구)

  • Kim, Changkyun;Lee, Jeonghwan
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.2
    • /
    • pp.34-45
    • /
    • 2018
  • The cleat system in coalbed methane (CBM) reservoirs is generally occupied by water which liberated during the coalification process, and behavior of water have influence on CBM production performance. Therefore, it is essential to investigate the effect of the water saturation to operate the degasification process and predict the CBM production performance properly. In this study, type curve analyses were performed on CBM reservoirs under various water saturation to improve the prediction of production performance. A CBM reservoir models with fully-, modestly-, and undersaturated reservoir were built to get production data using GEM by CMG Ltd., and the data were matched with Fetkovich, Palacio-Blasingame(P-B), and Agarwal-Gardner (A-G) type curve. The results showed that undersaturated reservoir was successfully matched by A-G type curve, while the Fetkovich type curve was inappropriate for matching in the late time. The modestly saturated model could be almost corresponded with all the type curve methods at late production period. For the fully saturated model, after peak production had been reached, both P-B and A-G methods showed a proper match to the reservoir production data without long-term production period. Based on the results, merit and demerit of each type curve under specific water saturation were analyzed and listed. Therefore, it is believed that the production data analysis with proper type curve model considering water saturation can be performed to predict accurate production performance.

Unfrozen Water Content and Unconfined Compressive Strength of Frozen Soils according to Degree of Saturations and Silt Fractions (포화도와 실트 함량에 따른 동결토의 부동 수분량 및 일축압축강도 특성)

  • Kim, Sang Yeob;Hong, Won-Taek;Hong, Seung Seo;Baek, Yong;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.12
    • /
    • pp.59-67
    • /
    • 2016
  • The strength of frozen soils is affected by size and shape of particles, and the amount of ice and unfrozen water. The objective of this study is to characterize the unfrozen water content and the unconfined compressive strength of the frozen soils according to the degree of saturations and silt fractions. The specimens are mixtures of sand, silt, and water. The silt fractions (SF), which are the ratio of the silt weight ($W_{silt}$) to the sand weight ($W_{sand}$), are 10% and 30%. In addition, the degrees of the saturation are 5%, 10%, 15%, and 20%. The specimens are frozen under the temperature of $-10^{\circ}C$ conditions. The uniaxial compression tests are conducted for 24 hours, 48 hours, and 72 hours after freezing to determine proper freezing time. The freezing time of 24 hours is chosen because the unconfined compressive strengths of specimens after 24 hours freezing times are similar to each other. Furthermore, the unfrozen water content is monitored during freezing using the TDR system. The unfrozen water content increases with the increase of the silt fraction and degree of saturation. The unconfined compressive strength of the frozen soils exponentially increases with increasing the degree of saturation. This study shows that the amount of ice has more influence on the strength of the frozen soils than the amount of unfrozen water.

Thermal Conductivity of Sand-Tire Rubber Mixtures According to Degree of Saturation: Effect of Hydrophobic Particles (포화도에 따른 모래-타이어칩 혼합토의 열전도도 변화: 입자의 소수성 영향)

  • Oh, Jiseok;Choo, Hyunwook
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.4
    • /
    • pp.7-18
    • /
    • 2024
  • Because of their mineral composition, tire chips have very low thermal conductivity compared with natural geomaterials, leading to the use of sand-tire rubber mixtures in thermally insulating applications. However, systematic studies evaluating factors affecting the thermal conductivity of sand-tire rubber mixtures have been very limited. Thus, this study investigated the thermal conductivity of sand-tire rubber mixtures with varying size ratios and tire chip fractions according to the degree of saturation (S). Specimens were prepared in insulated cells, and thermal needle probe tests were performed. In addition, the contact angle and solid surface free energy of sand-tire rubber mixtures were investigated. The results of this study revealed that the thermal conductivity decreased with increasing tire chip fraction but increased with increasing water content (or S). However, the trend of increasing thermal conductivity with S varied with the tire chip fraction, and the specimens with tire chip fraction > 0.4 clearly showed a delayed increase in thermal conductivity with increasing S. This reflected that hydrophobic particles (tire chip) affected the dependency of thermal conductivity on S because of the delayed formation of capillary water bridges, which served as additional thermal conduction paths with increased moisture content.

Fabrication and new model of saturated I-V characteristics of hydrogenerated amorphous silicon thin film transistor (비정질 실리콘 박막 트랜지스터 포화전압대 전류특성의 새로운 모델)

  • 이우선;김병인;양태환
    • Electrical & Electronic Materials
    • /
    • v.6 no.2
    • /
    • pp.147-151
    • /
    • 1993
  • PECVD에 의해 Burried gate 비정질 실리콘 박막트랜지스터를 제작하여 포화 전압 대 전류 특성에 대하여 새로운 해석을 하였고 해석 결과는 실험적으로 증명되었다. 본 연구의 결과 실험된 전달특성과 출력특성을 모델화 하였는데 이 모델식은 I$_{D}$와 V$_{G}$의 실험결과에서 얻어지는 3가지 함수를 기본으로 모델화 되었다. 포화 드레인 전류는 V$_{G}$가 증가할수록 증가되었고 디바이스의 포화는 드레인 전압이 커질수록 증가되었으며 문턱전압은 감소됨을 보였다.

  • PDF