• Title/Summary/Keyword: 포스트텐션 슬래브

Search Result 46, Processing Time 0.021 seconds

Joint Width Design for Post-Tensioned Concrete Pavement (포스트텐션 콘크리트 포장의 줄눈 폭 설계)

  • Kim, Dong-Ho;Kil, Yong-Su;Kim, Jin-Woung;Yun, Kyeong-Ku
    • International Journal of Highway Engineering
    • /
    • v.12 no.3
    • /
    • pp.147-154
    • /
    • 2010
  • In post-tensioned concrete pavement(PTCP), one of the most important design variables is the initial joint width, in addition to the tensioning spacing. The joint width between PTCP slabs directly affects noise and ride quality. If the joint width is too wide, noise increases and ride quality decreases. If the initial joint width is too narrow, on the other hand, under high temperature, PTCP slabs can blow up, or failures near the joint can occur due to excessive compressive stresses. This study was conducted to determine the optimal initial joint width of PTCP and to investigate the joint width behavior under temperature changes. The experiments were performed using one-year-old PTCP slabs. The concrete temperatures were measured using the temperature measurement sensors installed at various depths. The joint widths were measured using vernier-calipers at different times of a day and the relationship between the joint width and temperature was analyzed. From this study, the design methodology to determine the optimal initial joint width of PTCP could be proposed.

Strengthening Design by External Pre-tensioning and Post-tensioning Methods for Steel-concrete Composite Girders using Rating Factor (내하율을 이용한 강합성보의 외부 프리텐션과 포스트텐션 보강 설계)

  • Choi, Dong-Ho;Yoo, Dong-Min;Jeong, Gu-Sang;Park, Kyung-Boo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.5
    • /
    • pp.123-134
    • /
    • 2007
  • A method to determine the initial force of external tendon is proposed to improve the load carrying capacity in existing steel-concrete composite bridges. This method is applied to tensioning external tendons prior to and after concrete replacement for strengthening composite girders. A procedure to determine the number of tendon and initial tendon force is described with the proposed rating factor, which considers the increment of tendon force due to live loads. The method is applied to the improvement of rating factor in an existing composite bridge and its validity is confirmed.

Stiffness Reduction Factor for Post-Tensioned Flat Plate Slabs (포스트 텐션 플랫 플레이트 해석을 위한 강성감소계수)

  • Park, Young-Mi;Park, Jin-Ah;Han, Sang-Whan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.125-126
    • /
    • 2009
  • Effective beam width model (EBWM) has been used for analysis of post-tensioned (PT) flat plate slab frames under lateral loads. For analyzing PT flat plate slab structure under lateral loads with good precision, reduction in slab stiffness has to be accurately estimated for Effective beam width model(EBWM). For this purpose, this study collected test results of PT flat plate system conducted by former researches. And this study reduced the width of slab so that the stiffness of the EBWM converged into the lateral stiffness of each test specimens by trial and error. By conducting nonlinear regression analysis, an equation for calculating stiffness reduction factor for the PT flat plate is proposed.

  • PDF

Applicability of Partial Post-Tension Method for Deflection Control of Reinforced Concrete Slabs (RC슬래브의 처짐제어를 위한 상향긴장식 부분PT공법의 적용)

  • Lee, Deuck-Hang;Kim, Kang-Su;Kim, Sang-Sik;Kim, Yong-Nam;Lim, Joo-Hyuk
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.3
    • /
    • pp.347-358
    • /
    • 2009
  • Recently, it is getting into a good situation for the flat-plate slab system to be applied. The flat-plate slab without beam, however, is often too weak to control deflection properly compared to other typical slab-beam structures, for which the post-tension method is generally regarded as one of best solutions. The post-tension (PT) method can effectively control deflection without increase of slab thickness. Despite this good advantage, however, the application of PT method has been very limited due to cost increase, technical problems, and lack of experiences. Therefore, in order to reduce difficulties on applying full PT method under the current domestic circumstances and to enhance constructability of PT system, this research proposed the partial PT method with top jacking anchorage applied in a part of span as need. For the top jacking anchorage system, the efficiency of deflection control shall be considered in detail because it can vary widely depending on the location of anchorage that can be placed anywhere as need, and tensile stresses induced at back of the anchorage zone also shall be examined. Therefore, in this study, analysis were performed on the efficiency of deflection control depending on the location of anchorage and on tensile stresses or forces using finite element method and strut and tie model in the proposed top jacking anchorage system. The proposed jacking system were also applied to the floor slabs at a construction site to investigate its applicability and the analysis results of slab behavior were compared to the measured values obtained from the PT slab constructed by the partial PT method. The result of this study indicates that the partial PT method can be very efficiently applied with little cost increase to control deflection and tensile stresses in the region as a need basis where problem exists.

Stiffness Reduction Factor for Post-Tensioned Flat Plate Slabs under Lateral Loads (횡하중하의 포스트 텐션 플랫 플레이트 해석을 위한 강성감소계수)

  • Park, Young-Mi;Park, Jin-Ah;Han, Sang-Whan
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.5
    • /
    • pp.661-668
    • /
    • 2009
  • Effective beam width model(EBWM) has been used for analysis of post-tensioned(PT) flat plate slab frames under lateral loads. The accuracy of this model in predicting lateral drifts and unbalanced moments strongly depends on the estimated effective stiffness of PT flat plate slabs. As moments on the slab due to lateral loads increases, cracks occur which leads to stiffness reduction in slabs. For analyzing PT flat plate slab structure under lateral loads with good precision, reduction in slab stiffness has to be accurately estimated for EBWM. For this purpose, this study collected test results of PT flat plate system conducted by former researches. And this study reduced the width of slab so that the stiffness of the EBWM converged into the lateral stiffness of each test specimens by trial and error. By conducting nonlinear regression analysis using the stiffness ratio of the reduced width of slab to the effective width of EBWM with respect to the level of slab moments, an equation for calculating stiffness reduction factor for slab is proposed. For verifying the accuracy of the proposed equation, this study compared with the test result of the PT flat plate frame. It is shown that the EBWM with the proposed equation predicts the actual stiffness of the PT specimen which varied according to the level of applied moment.

Design Guide of Post-Tensioned Prestressed Concrete Pavement (포스트텐션 콘크리트 포장 공법 설계지침 개발)

  • Park, Hee-Beom;Kim, Seong-Min;Bae, Jong-Oh
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.17-18
    • /
    • 2010
  • This study was conducted to develop the design guide of PTCP (Post Tensioned Concrete Pavement). The behavior of PTCP was investigated by performing structural analyses and field experiments. Based on the results, the PTCP design guide was developed by determining the size of concrete slab, design environmental and vehicle loads, and amount and method of longitudinal and transverse tensioning.

  • PDF

Design Methodology of Longitudinal Post Tensioning for Post-Tensioned Concrete Pavement (포스트 텐션드 콘크리트 포장의 종방향 긴장 설계 방안)

  • Yun, Dong-Ju;Kim, Seong-Min;Bae, Jong-Oh
    • International Journal of Highway Engineering
    • /
    • v.11 no.1
    • /
    • pp.203-215
    • /
    • 2009
  • This study was conducted to develop the design methodology of longitudinal post tensioning for the post-tensioned concrete pavement (PTCP). The longitudinal stress distribution in the PTCP slab was analyzed when post tensioning was applied. Then, the tensile stress distribution in the PTCP slab due to the environmental and vehicle loads needed for the design was investigated. In addition, prestress losses were calculated considering the losses due to the frictional resistance between the slab and underlying layer and due to various reasons related to tensioning. The tensile stresses used for the design were obtained by adding the stresses from the critical conditions under both the environmental and vehicle loads. The prestress losses were obtained by considering actual field conditions. The effective post tensioning amount was determined by considering the design loads including environmental and vehicle loads and various losses, and the effect of the allowable tensile stress on the post tensioning amount was investigated. The initial stage of the design of the longitudinal post tensioning is to obtain the stresses under the design loads and the required prestress determined by subtracting the allowable tensile stress from the design stress. Then, the optimal tendon spacing and the tensioning amount can be obtained by comparing with the effective tensioning amount including various stress losses.

  • PDF

Seismic Performance of Gravity-Load Designed Post-Tensioned Flat Plate Frames (중력하중으로 설계된 포스트텐션 플랫플레이트 골조의 내진성능)

  • Han, Sang-Whan;Park, Young-Mi;Rew, Youn-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.3
    • /
    • pp.31-38
    • /
    • 2010
  • The purpose of this study is to evaluate the seismic performance of gravity-designed post tensioned (PT) flat plate frames with and without slab bottom reinforcement passing through the column. In low and moderate seismic regions, buildings are often designed considering only gravity loads. This study focuses on the seismic performance of gravity load designed PT flat plate frames. For this purpose, 3-, 6- and 9-story PT flat plate frames are designed considering only gravity loads. For reinforced concrete flat plate frames, continuous slab bottom reinforcement (integrity reinforcement) passing through the column should be placed to prevent progressive collapse; however, for the PT flat plate frames, the slab bottom reinforcement is often omitted since the requirement for the slab bottom reinforcement for PT flat plates is not clearly specified in ACI 318-08. This study evaluates the seismic performance of the model frames, which was evaluated by conducting nonlinear time history analyses. For conducting nonlinear time history analyses, six sets of ground motions are used as input ground motions, which represent two different hazard levels (return periods of 475 and 2475 years) and three different locations (Boston, Seattle, and L.A.). This study shows that gravity designed PT flat plate frames have some seismic resistance. In addition, the seismic performance of PT flat plate frames is significantly improved by the placement of slab bottom reinforcement passing through the column.

Analytical Model for Post Tension Flat Plate Frames (포스트 텐션 플랫 플레이트 골조의 해석모델)

  • Han, Sang-Whan;Ryu, Jong-Hyuk
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.6
    • /
    • pp.23-32
    • /
    • 2007
  • This study developed an analytical model for predicting nonlinear behavior of PT flat plate frames having slab-column connections with and without slab bottom reinforcement passing through the column. The developed model can predict the failure sequence until punching failure occurs. For verifying the analytical model, the test results of PT flat plate slab-column connections were compared with the results of the analysis. Moreover, the results of static pushover test and shaking table test of 2 story PT flat plate frame were compared with analysis results. For evaluating seismic performance of PT flat plate frame, this study conducted nonlinear response history analysis of the 2 story PT flat plate frame with and without slab bottom reinforcement passing through the column under 1940 El Centro ground motion scaled to have pseudo spectral acceleration of 0.3, 0.5, and 0.7g at the fundamental period of the frame. This study observed that as ground motion is more intense, seismic demands for the frame having the connections without slab bottom reinforcement passing through the column are larger than those without slab bottom reinforcement.

Analysis of Post-tensioned Slab Bridge by Means of Specially Orthotropic Theory (특별직교이방성 이론에 의한 포스트텐션 슬래브교의 해석)

  • Han, Bong-Koo;Bang, Bae-San
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.1 no.4
    • /
    • pp.13-17
    • /
    • 2010
  • A post-tensioned slab bridge is analyzed by the specially orthotropic theory. Each longitudinal and transverse steel layer is regarded as a lamina, and material constants of each lamina is calculated by the use of rule of mixture. This slab bridge with simple support is under uniformly distributed vertical and axial loads. In this paper, the finite difference method and the beam theory are used for analysis. The result of beam analysis is modified to obtain the solution of the plate analysis. The result of this paper can be used for post-tensioned slab bridge analysis by the engineers with undergraduate study in near future.

  • PDF