본 논문에서는 호흡 연동 장치와 EBT로부터 획득한 폐실질 영상에 대하여 동적 윤곽선 모델 방법과 영역 성장법을 이용하여 폐실질 영역을 검출하였다. 그런 다음 , 검출된 폐실질 영역내에서의 각종 정량적 요소들을 도출하여 농도 분포 곡선에대한 분석을 하였다. 동적 윤곽선 모델방법에서 페실질 영역의 낮은 휘도 준위와 폐의 윤곽선 벡터 방향을 고려한 에너지 함수를 제안하였다. 그리고 폐실질 영역 성장법에서는 폐실질 영역내의 분포한 공기 성분에 대한 화소를 확장시켜 효과적으로 폐실질 영역을 검출하였다. 추출된 폐실질 영역내의 빈도 분포 곡선을 분석하여 정상군과 비교한 결과 만성 폐쇄성 폐질환자에서는 정상인에 비하여 평균 농도,최대 빈도 농도, 최대 상승 기울기 농도가 낮았으며, 농도 분포곡선은 더 낮은 쪽으로 이동하였음을 알 수 있었다. 또한, 특발성 폐섬유증 환자에서는 평균 농도, 최대 빈도 농도, 최대 상승 기울기 농도가 모두 증가되었고 농도 분포 곡선은 더 높은쪽으로 이동하였다. 폐실질 영역을 추출하여 히스토그램 분포에 대한 정량적 분석을 함으로써 정상인으로부터 만성 폐쇄성 질환자의 폐섬유증 환자를 구분할 수 있었다.
의료 영상에서 폐 영역의 정확한 추출과 폐엽의 분할은 폐 기능의 측정 및 폐 질환의 진단을 위하여 매우 중요하다. 본 논문에서는 EBT 흉부 영상에서 자동으로 폐 영역을 추출하고 폐 영역을 폐엽 단위로 분할하는 방법을 제안한다. 본 논문에서는 히스토그램 분석과 형태학적 연산자를 이용하여 폐 영역을 추출하고 adaptive filter를 이용한 에지 연산과 폐엽 경계(pulmonary fissure)에 대한 의학적 지식을 바탕으로 폐엽을 분할하였다. 본 방법을 여러 종류의 EBT 폐 영상에 적용하여 실험한 결과 95%이상의 정확도를 보였다.
In this paper. we present methods that extract lung regions from chest EBT(electron beam tomography) images then segment the extracted lung region into lung lobes. We use histogram based thresholding and mathematical morphology for extracting lung regions. For detecting pulmonary fissures, we use edge detector and knowledge-based search method. We suggest this edge detector, which uses adaptive filter scale, to work very well for real edge and insensitive for edge by noise. Our experiments showed about 95% accuracy or higher in extracting lung regions and about 5 pixel distance error in detecting pulmonary fissures.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2011.10a
/
pp.554-556
/
2011
The occurrence of various vascular diseases due to the need for accurate and rapid diagnosis was emphasized. Several limitations to the presence of pulmonary vascular angiography for chest CT imaging was aware of the need for diversity in medical image processing with Insight Toolkit(ITK) suggested pulmonary vascular division. In this paper, by contrast, based on the value of a two-step partitioning of the lungs and blood vessels to perform the process of splitting. Lung area segmentation of each stage image enhancement, threshold value, resulting in areas of interest cut image acquisition and acquired pulmonary vascular division in lung area obtained by applying the fill area. Partitioned on the basis of pulmonary vascular imaging to obtain three-dimensional visualization image of the pulmonary vascular analysis and diagnosis of a variety of perspectives are considered possible.
Park, Chan;Yu, Hong-Yeon;Hong, Sung-Hoon;Kim, Soo-Hyung;Lee, Guee Sang
Annual Conference of KIPS
/
2004.05a
/
pp.699-702
/
2004
단층촬영에 의해 획득된 흉부영상의 폐 영역은 기관지, 폐동맥, 폐정맥으로 구성된 복잡한 형태를 가지고 있다. 또한 이들 조직과 폐 영역 내에 존재하는 악성 종양과 같은 질병들 사이의 공간정보의 유사성으로 인해 방사선 전문의조차도 질병을 간단히 구분 해내는데 많은 어려움이 따른다. 따라서 본 논문에서는 이러한 유사한 공간정보를 갖는 폐 영역을 수리형태학 필터인 모폴로지(morphology)와 국부적인 워터쉐드(watershed) 알고리즘을 이용하여 분할하고, 분할된 폐 영역으로부터 색전 또는 종양 등의 결절(nodule)의 정보를 가지고 있는 혈관들을 추출하는 효과적인 알고리즘을 제안한다.
Won Chulho;Lee Seung-Ik;Lee Jung-Hyun;Seo Young-Soo;Kim Myung-Nam;Cho Jin-Ho
Journal of Korea Multimedia Society
/
v.8
no.5
/
pp.641-650
/
2005
In this parer, curve stopping function based on the CT number of lung parenchyma from CT lung images is proposed to detect lung region in replacement of conventional edge indication function in geodesic active contour model. We showed that the proposed method was able to detect lung region more effectively than conventional method by applying three kinds of measurement numerically. And, we verified the effectiveness of proposed method visually by observing the detection Procedure on actual CT images. Because lung parenchyma region could be precisely detected from actual EBCT (electron beam computer tomography) lung images, we were sure that the Proposed method could aid to early diagnosis of lung disease and local abnormality of function.
Proceedings of the Korean Information Science Society Conference
/
2004.04b
/
pp.763-765
/
2004
현재 의료 영상을 이용한 신속하고 정확한 진단과 치료를 위하여 각 기관별로 영상을 분할하는 방식이 기본적으로 사용되고 있다. 본 논문에서는 워터쉐드(Watershed) 알고리즘을 이용하여 해부학적 기관 중 폐 영역을 분할하는 방식을 제안한다. 초기에 소벨 에지 마스크(Sobel Edge Mask)를 이용하여 윤곽선을 강조하여 워터쉐드 알고리즘을 적용하였을 경우 과다 분할되는 문제점이 발생한다. 이를 해결하기 위하여 제거(Opening) 연산과 채움(Closing) 연산을 이용하여 마커(Marker) 정보를 추출하여 워터쉐드 알고리즘을 재적용하여 폐 영역 이미지를 분할하였다. 본 논문에서 제안한 마커 정보를 이용한 워터쉐드 재적용 방식은 폐 영역 효율적이고 정확하게 추출한다.
Kim, Hyun-Soo;Peng, Shao-Hu;Muzzammil, Khairul;Kim, Deok-Hwan
Journal of the Institute of Electronics Engineers of Korea CI
/
v.46
no.6
/
pp.35-43
/
2009
In the Computer Aided Diagnosis(CAD) System, the efficient way of classifying nodules from chest CT images of a patient is to perform the classification of the remaining part after the pulmonary vessel extraction. During the pulmonary vessel extraction, due to the small difference between the vessel and nodule features in imaging studies such as CT scans after having an injection of contrast, nodule maybe extracted along with the pulmonary vessel. Therefore, the pulmonary vessel extraction method plays an important role in the nodule classification process. In this paper, we propose a nodule reclassification method based on vessel thickness analysis. The proposed method consist of four steps, lung region searching step, vessel extraction and thinning step, vessel topology formation and correction step and the reclassification of nodule in the vessel candidate step. The radiologists helped us to compare the accuracy of the CAD system using the proposed method and the accuracy of general one. Experimental results show that the proposed method can extract pulmonary vessels and reclassify false-positive nodules accurately.
Kwon Y. J.;Won C. H.;Park H. J.;Lee J. H.;Lee S. H.;Cho J. H.
Journal of Korea Multimedia Society
/
v.8
no.3
/
pp.336-344
/
2005
In this paper, we extracted the contour of lung parenchyma on EBT images with the improved active contour model. The objects boundary in conventional active contour model can be extracted by controlling internal energy and external energy as energy minimizing form. However, there are a number of problems such as initialization and the poor convergence about concave part. Expecially, contour can not enter the concave region by discouraging characteristic about stretching and bending in internal energy. We controlled internal energy by moving local perpendicular bisector point of each control point in the contour and implemented the object boundary by minimizing energy with external energy The convergence of concave part could be efficiently implemented toward lung parenchyma region by this internal energy and both lung images for initial contour could also be detected by multi-detection method. We were sure this method could be applied detection of lung parenchyma region in medical image.
We propose an automatic segmentation method for identifying pulmonary structures using gray-level information of chest CT images. Our method consists of following five steps. First, to segment pulmonary structures based on the difference of gray-level value, we select the threshold using optimal thresholding. Second, we separate the thorax from the background air and then the lungs and airways from the thorax by applying the inverse operation of 2D region growing in chest CT images. To eliminate non-pulmonary structures which has similar intensities with the lungs, we use 3D connected component labeling. Third, we segment the trachea and left and right mainstem bronchi using 3D branch-based region growing in chest CT images. Fourth, we can obtain accurate lung boundaries by subtracting the result of third step from the result of second step. Finally, we select the threshold in accordance with histogram analysis and then segment radio-dense pulmonary vessels by applying gray-level thresholding to the result of the second step. To evaluate the accuracy of proposed method, we make a visual inspection of segmentation result of lungs, airways and pulmonary vessels. We compare the result of the conventional region growing with the result of proposed 3D branch-based region growing. Experimental results show that our proposed method extracts lung boundaries, airways, and pulmonary vessels automatically and accurately.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.