• Title/Summary/Keyword: 폐배터리

검색결과 57건 처리시간 0.027초

NCM계 리튬이온 배터리 양극재의 그라파이트 첨가 탄산화 배소와 수침출에 의한 Li 회수 (Lithium Recovery from NCM Lithium-ion Battery by Carbonation Roasting with Graphite Followed by Water Leaching)

  • 이소연;이대현;이소영;손호상
    • 자원리싸이클링
    • /
    • 제31권4호
    • /
    • pp.26-33
    • /
    • 2022
  • 리튬이온배터리의 수요가 증가함에 따라 향후 발생할 폐리튬이온배터리 중의 유가금속 회수가 필요하다. 대량의 폐리튬이온배터리 리사이클링에는 건식제련이 적합하지만 Li이 슬래그나 분진으로 손실되는 문제점이 있다. 본 연구에서는 폐리튬이온배터리의 NCM계 양극재로부터 Li을 회수하기 위해 그라파이트 첨가에 따른 탄산화 배소와 수침출 거동에 대해 조사하였다. 그라파이트를 10 wt% 첨가 시, Ar 및 CO2 분위기에서 승온 중 약 850 K에서 급격한 무게 감소와 함께 CO 및 CO2 가스가 배출되었다. 급격한 무게 감소 후 NCM은 금속 산화물 및 순금속으로 분해되고 환원되었다. 따라서 블랙파우더(NCM+그라파이트)의 탄산화 배소에서는 NCM의 분해에 의해 O2가 발생하면서 Li2O, NiO 등의 산화물이 생성되고, 이어서 Li2O가 CO2와 반응하여 Li2CO3를 생성하며, NiO의 일부는 그라파이트에 의해 환원되어 금속 Ni을 생성한다. 그리고 탄산화 배소 후 수침출에 의해 약 99.95 % 순도의 Li2CO3를 최대 94.5 %까지 회수하였다.

열처리 및 기계화학적 처리를 통한 폐LFP 배터리로부터 가용성 리튬으로의 전환 연구 (Study of Conversion of Waste LFP Battery into Soluble Lithium through Heat Treatment and Mechanochemical Treatment)

  • 김보람;김희선;김대원
    • 자원리싸이클링
    • /
    • 제33권3호
    • /
    • pp.21-29
    • /
    • 2024
  • 전 세계적으로 탄소 중립 전략에 따른 탈탄소화와 관련하여 전기자동차의 수요가 급증하고 있다. 전기자동차의 주요 부품인 리튬이온 배터리의 수요 또한 급증하게 되었고, 이는 폐배터리의 발생으로 이어진다. 이에 폐배터리를 재활용하여 유가 금속을 회수하기 위한 연구가 수행되고 있으며, 본 연구에서는 폐LFP 배터리의 양극재로부터 리튬을 선택적으로 선침출 및 회수하고자 하였다. 양극재 분말 내 포함된 바인더를 제거하여 반응 표면적 증대 및 반응성을 높이기 위하여 대기 및 질소 분위기 그리고 다양한 온도 범위에서 열처리하였고, 이후 기계화학적(Mechanochemical) 공정을 통하여 수침출 하였다. 먼저, 열처리 후 분말을 과황산나트륨(Na2S2O8)과 기계화학적 반응을 이용하여 가용성 리튬화합물로 전환하였고, 이후 증류수를 이용하여 수침출 하였다. 본 연구에서 열처리를 통한 양극재 분말의 특성 변화를 확인하였고, 최종 질소 분위기에서 열처리하여 모든 온도 범위에서 리튬의 침출율은 약 100%로 선침출할 수 있었다.

리튬 이온 배터리의 자가 방전에 따른 내부 화학적 상태를 고려한 3-D K-means Clustering 스크리닝 기법 연구 (3-D K-means clustering method considering internal chemical state variation of self-dischareg of Li-ion battery)

  • 한동호;권상욱;김승우;임철우;김종훈
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2019년도 추계학술대회
    • /
    • pp.150-151
    • /
    • 2019
  • 리튬 이온 배터리가 전기 자동차 및 다양한 어플리케이션에 적용됨에 따라 폐배터리의 수요 또한 증가하고 있다. 내부 화학적 상태가 상이한 배터리의 전기적 특성실험을 통해 파라미터를 선정할 수 있으며 전기적 특성 실험 전 후의 시간차에 따른 파라미터 변화를 반영하는 것이 필수적이다. 제조 공정과정의 파라미터의 측정값과 특성실험 후의 파라미터 재측정값을 비교함으로써 이를 3-D Kmeans Clustering 알고리즘에 반영하여 더욱 정밀한 셀 선별을 실시하였다.

  • PDF

과산화수소를 혼합한 염산용액으로 폐리튬이온배터리의 용융환원된 금속합금의 침출 (Leaching of Smelting Reduced Metallic Alloy of Spent Lithium Ion Batteries by the Mixture of Hydrochloric Acid and H2O2)

  • 문현승;;이만승
    • 자원리싸이클링
    • /
    • 제30권5호
    • /
    • pp.25-31
    • /
    • 2021
  • 폐리튬이온배터리를 고온에서 용융환원처리하면 코발트, 니켈 및 구리가 환원된 금속을 얻을 수 있다. 본 논문에서는 상기 금속외에 망간, 철 및 규소가 같이 환원된 금속합금의 침출을 조사하였다. 침출용액으로 염산에 과산화수소를 산화제로 첨가해 염산과 산화제의 농도, 반응시간 및 온도와 광액밀도를 변화시켜 니켈, 코발트 및 구리를 99% 이상 침출시킬 수 있는 조건을 조사하였다. 과산화수소 농도와 광액밀도가 금속의 침출에 미치는 영향이 현저했으며 20에서 80℃의 반응온도범위에서 반응온도는 침출에 큰 영향을 미치지 않았다. 2M의 염산용액에서 5%의 과산화수소를 혼합한 용액으로 60℃의 반응온도와 30 g/L의 광액밀도조건에서 150분 반응시키면 규소를 제외한 모든 금속이 99% 이상 침출되었다.

폐리튬인산철 양극재로부터 리튬의 선침출 및 인과 철의 개별적 분리 회수 연구 (Pre-leaching of Lithium and Individual Separation/Recovery of Phosphorus and Iron from Waste Lithium Iron Phosphate Cathode Materials)

  • 김희선;김보람;김대원
    • 청정기술
    • /
    • 제30권1호
    • /
    • pp.28-36
    • /
    • 2024
  • 전기차의 수요가 증가함에 따라 리튬이온전지의 시장 또한 급증하고 있다. 리튬이온전지의 배터리 수명은 제한되어 있으며, 수명을 다한 배터리의 교체 필연적이므로 폐리튬이온전지 배터리가 발생하게 된다. 이에 리튬이온전지 중 폐리튬인산철(LiFePO4, 이하 LFP라고 함) 양극재 분말에서부터 리튬은 선택적으로 선침출하고 인산철(FePO4) 분말을 회수하였다. 회수된 인산철 분말은 탄산나트륨(Na2CO3) 분말과 혼합하여 열처리하여 그 결정상을 확인하였다. 열처리 온도를 변수로 하였고, 이후 증류수를 이용하여 수침출 후 각 성분의 침출률 및 분말 특성을 비교하였다. 본 연구에서 리튬은 약 100% 침출률을 보였고 800 ℃에서 열처리한 분말의 경우 인이 약 99% 침출되었으며, 침출 잔사는 Fe2O3 단일 결정상으로 확인되었다. 따라서 본 연구에서는 폐LFP 분말로부터 리튬, 인 그리고 철 성분을 개별적으로 분리 및 회수할 수 있었다.

NCM계 리튬이온 배터리 양극재의 수소환원과 수침출에 의한 리튬 회수 (Lithium Recovery from NCM Lithium Ion Battery by Hydrogen Reduction Followed by Water Leaching)

  • 이소영;이소연;이대현;손호상
    • 자원리싸이클링
    • /
    • 제33권1호
    • /
    • pp.15-21
    • /
    • 2024
  • 전기차용 리튬이온배터리의 수요가 증가함에 따라 향후 발생할 폐리튬이온배터리 중의 유가금속 회수가 필요하다. 본 연구에서는 리튬이온배터리의 NCM계 양극재를 수소환원과 수침출에 의해 리튬을 수산화리튬으로 회수할 때의 회수율에 미치는 반응온도의 영향을 조사하였다. 반응온도가 상승함에 따라 수소에 의한 NiO, CoO의 환원에 의해 무게 감소율이 반응초기부터 급격하게 증가하였으며 동시에 H2O 발생량도 증가하였다. 602 ℃ 이상에서는 양극재 중의 Ni, Co가 전부 환원되어 금속상으로 존재하였다. 그리고 수소환원 온도의 상승과 함께 Li 회수률도 증가하였으나 704 ℃ 이상에서는 약 92 % 이상의 유사한 수준을 나타내었다. 따라서 폐Li이온 배터리의 전처리로 수소환원하는 것에 의해 리튬만 사전에 회수하고 잔사를 재처리하면 효율적으로 유가금속을 분리하여 회수할 수 있을 것으로 기대된다.

리튬-청정 에너지 기술의 핵심금속: 1차 및 2차 자원으로부터 리튬 확보를 위한 도전과 기회에 대한 종합적 고찰 (Lithium - A Critical Metal for Clean Energy Technologies: A Comprehensive Review on Challenges and Opportunities for Securing Lithium from Primary and Secondary Resources)

  • ;김민석;이찬기;정경우;이재천
    • 자원리싸이클링
    • /
    • 제28권5호
    • /
    • pp.3-18
    • /
    • 2019
  • 청정에너지에 대한 수요가 증가함에 따라 리튬이온배터리의 소비가 꾸준히 늘어날 것으로 예상된다. 따라서 전세계적으로 리튬의 안정적 공급이 중요한 문제가 되고 있다. 저품위 광석, 점토, 해수 그리고 폐리튬이온배터리 등과 같은 다양한 자원으로부터 리튬의 회수를 위한 공정과 기술들이 개발되어져 왔지만, 대부분의 리튬은 간수와 스포듀민 광석으로부터 상업적으로 생산되고 있다. 특히, 휴대폰과 전기자동차(EVs)를 포함한 여러 분야에서 발생하고 있는 사용 후 리튬이온배터리에 대한 재활용 기술들의 상용화는 많은 잠재력을 가지고 있다. 본 고찰은 폐리튬이온배터리에 대하여 새롭게 개발된 리튬 회수 공정과 더불어 광물과 간수를 이용하기 위한 상용공정 및 최신 기술들을 소개한다. 아울러 미래의 리튬 공급이 기술적인 관점에서 논의된다. 저품위 광석으로부터 리튬 회수를 위하여 개발되고 있는 최신공정들은 주로 건식+습식 제련에 기반을 둔 접근방법에 초점을 두고 있으며, 단지 몇몇 방법들만이 안정화 되었다. 리튬이온배터리의 소비(현재 생산되는 리튬의 56%)에 비교하여 리튬의 낮은 재활용율(1% 미만) 때문에 2차 자원의 처리는 굉장한 기회로서 앞을 내다보는 것일 수 있다. 또한 탄소경제, 환경과 에너지에 대한 우려를 생각해 볼 때, 습식제련공정이 이러한 이슈를 해결할 수 있을 것이다.

전력용 능동필터형 무정전 전원장치 (Active Power Filter Type Uninterruptible Power Supply (UPS))

  • 김제홍;최재호
    • 조명전기설비학회논문지
    • /
    • 제12권4호
    • /
    • pp.100-105
    • /
    • 1998
  • 본 논문은 고조파와 무효전력을 보상하는 전력용 능동펼터의 성능을 가지는 무정전 전원장치의 제어기볍올 제안 한다. 제안된 시스템은 단지 하나의 전력변환회로만올 가지고 AC/DC 정류기 및 배터리 충전기 그리고 인버터로서 동작할 수 있다. 더욱이 상용전원이 정상일 경우 제안된 시스템은 비선형 부하에 의해 발생된 고조파 및 무효 전 력올 보상하기 위해 전력용 능동필터 모드로 동작한다. 그리고 상용전원이 비정상일 경우는 인버터로 동작하여 배터리에 충전된 전력을 부하로 공급하는 배터리 방전전력 모드로 동작올 한다. 전력용 능동필터 모드에서 보상전류 를 정확히 계산하기 위한 새로운 폐-루프 방식을 제안한다. 마지막으로 제안된 5[kVA]급 시스템의 성능이 시뮬레이션과 실험결과들에 의해 입증된다.

  • PDF

폐 전지로부터 재활용 과정을 통한 란타넘, 네오디뮴 회수에 관한 연구 (A Study on the Recovery of Lantanum and Neodymium from Waste Battery Through the Recycling Process)

  • 채병만;이석환;김득현;서은주;김현일;이승환;이상우
    • 청정기술
    • /
    • 제26권2호
    • /
    • pp.116-121
    • /
    • 2020
  • 본 연구에서는 유가금속 회수를 한 전기차 폐배터리 부산물의 재활용에 관하여 연구하였다. 폐배터리 부산물에는 희토류들이 남아있으나, 부산물의 형태로는 소재로서의 가치가 없기에 정제과정을 거쳐 희토류 산화물로 회수하였다. 희토류침전분말 형태의 부산물을 30% 수산화나트륨을 이용하여 가공이 편한 수산화물로 변환한 뒤, 옥살산의 용해도 차이를 이용하여 남아 있는 불순물을 정제한 뒤, D2EHPA (Di-(2-ethylhexyl) phosphoric acid)를 사용하여 이트륨을 분리하였다. 과망가니즈산 칼륨을 이용하여 세륨을 분리 후, PC88A (2-ethylhexylphosphonic acid mono-2-ethylhexyl ester)를 사용하여 란타넘과 네오디뮴을 분리하였다. 그 후 800 ℃의 온도에서 소성하여 란타넘, 네오디뮴 산화물로 재생하는 방법을 확인하였다.