• Title/Summary/Keyword: 폐광

Search Result 385, Processing Time 0.034 seconds

An Analysis of Artificial Intelligence Algorithms Applied to Rock Engineering (암반공학분야에 적용된 인공지능 알고리즘 분석)

  • Kim, Yangkyun
    • Tunnel and Underground Space
    • /
    • v.31 no.1
    • /
    • pp.25-40
    • /
    • 2021
  • As the era of Industry 4.0 arrives, the researches using artificial intelligence in the field of rock engineering as well have increased. For a better understanding and availability of AI, this paper analyzed the types of algorithms and how to apply them to the research papers where AI is applied among domestic and international studies related to tunnels, blasting and mines that are major objects in which rock engineering techniques are applied. The analysis results show that the main specific fields in which AI is applied are rock mass classification and prediction of TBM advance rate as well as geological condition ahead of TBM in a tunnel field, prediction of fragmentation and flyrock in a blasting field, and the evaluation of subsidence risk in abandoned mines. Of various AI algorithms, an artificial neural network is overwhelmingly applied among investigated fields. To enhance the credibility and accuracy of a study result, an accurate and thorough understanding on AI algorithms that a researcher wants to use is essential, and it is expected that to solve various problems in the rock engineering fields which have difficulty in approaching or analyzing at present, research ideas using not only machine learning but also deep learning such as CNN or RNN will increase.

Evaluation of water quality and aquatic ecology of Andong lake using SWAT-WET (SWAT-WET을 활용한 안동호의 수질 및 수생태 평가)

  • Woo, Soyoung;Kim, Wonjin;Kim, Sehoon;Kim, Yongwon;Kim, Seongjoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.52-52
    • /
    • 2021
  • 안동호는 상류지역의 휴·폐광산과 비점오염원으로부터 발생하는 각종 오염물질이 유입되고 있어, 호소 부영양화에 대한 문제가 계속 제기되고 있다. 이러한 안동호의 수환경은 댐 하류 유역과 같은 수계의 임하호의 수환경에도 영향을 미치기 때문에, 안동호 수질 및 수생태 건강성 평가가 계속 수행되고 있다. 본 연구에서는 SWAT-WET(Soil ad Water Assessment Tool-Water Ecosystems Tool)을 이용하여, 안동호의 수질 및 수생태 건강성을 평가하고자 한다. 이를 위해 안동댐 유역(1,584 km2)을 대상으로 SWAT 모형을 구축하였으며(2010~2019년), 댐의 운영을 고려하여 도산 관측소(안동댐 유입지점)와 안동1 관측소(안동댐 하류지점)의 실측 유량 및 수질(SS, T-N, T-P)에 대한 검보정을 수행하였다. SWAT 검보정 결과, 유유출량의 R2, NSE(Nash sutcliffe efficiency)는 각각 0.76, 0.74 이상, SS, T-N, T-P의 R2는 각각 0.71, 0.81, 0.62 이상으로 분석되어 적용성을 확인하였다. 그리고 검보정한 SWAT의 유출량 및 수질 결과를 1차원 수생태계 모델인 WET에서 안동호의 유입자료로 적용하여, 안동호의 수심에 따른 수온, 수질, 저서동물 등의 수환경 결과를 모의할 예정이다. SWAT-WET 모의 결과는 수온, 수질, 저서동물 관측값과 비교하여 SWAT-WET 모델의 적용성을 평가하고, 안동댐의 상류 유출 특성 변화에 따른 안동호의 수질 및 수생태 건강성을 평가할 예정이다.

  • PDF

Adsorption of Arsenate on the Synthesized Layered Double Hydroxide Materials (층상이중 수산화물을 이용한 5가 비소 흡착 특성)

  • Choi, Young-Mu;Choi, Won-Ho;Kim, Jung-Hwan;Park, Joo-Yang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1B
    • /
    • pp.91-96
    • /
    • 2009
  • Layered double hydroxide is synthesized and used in the arsenate adsorption experiments. The shapes of two materials analyzed by TEM showed that unheated material is amorphous in shape, micro-sized while heat treated material showed more crystallized in shape and nano-sized. X-ray diffraction showed this result more obvious. $N_2$ adsorption-desorption results showed that the materials are mesoporous and the specific surface area of the heated material is more than two times larger than the unheated material. Adsorption of As(V) is expected to be more in the heated material than the unheated material. Kinetic test of arsenate adsorption showed very fast reaction. The reactivity of Fe with As(V) might be the main factor for this result. The reaction kinetic of the heated and the unheated materials were similar and even the adsorption isotherms showed similar results for both materials. Both materials are found to be useful in remediation of soil and groundwater polluted by waste mine tailings consist of high concentration of As(V).

Assessment of the Feasibility of the Hydrochloric Acid Extraction Method and the Chemical Properties of Agricultural Soils in reclaimed mines (폐광산 토양개량‧복원사업 완료 농경지 안정화 효율 및 화학성 평가)

  • Ju-In Ko;Mi-Sun Park;Gwan-In Park;Seung-Han Baek;Il-Ha Koh
    • Journal of Soil and Groundwater Environment
    • /
    • v.29 no.1
    • /
    • pp.10-17
    • /
    • 2024
  • In Korea, the common remedial process for reclamation of agricultural soils nearby abandoned mines involves chemical soil stabilization followed by covering with clean soil. This study investigated the chemical properties of cover soils and the validity of HCl extraction method in assessing the degree of As and heavy metal stabilization in stabilized soils collected from 14 plots where mine reclamation had been completed. The results revealed there were no major differences in contaminants extraction rate between the stabilized soils and contaminated soils, suggesting HCl extraction procedure is a less feasible method to determine the efficiency of the stabilization. Soil quality indicators including OM, SiO2, P2O5, etc. of the land-covering soils were generally lower than those of stabilized soils that used to be the cultivation layer before the stabilization. Nonetheless, the value of those indicators didn't meet the regulatry limits of agricultural soil. Therefore, future strategy for mine reclamation should concentrate not only on contaminant concentration but also on soil quality parameters for agricultural use of the reclaimed soil.

Remediation of Arsenic Contaminated soils Using a Hybrid Technology Integrating Bioleaching and Electrokinetics (생용출과 전기동력학을 연계한 통합기술을 이용한 비소 오염 토양의 정화)

  • Lee, Keun-Young;Kimg, Kyoung-Woong;Kim, Soon-Oh
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.2
    • /
    • pp.33-44
    • /
    • 2009
  • The objective of the study was to develop a hybrid technology integrating biological and physicochemical technologies to efficiently remediate arsenic contaminated lands such as abandoned mine area. The tailing soil samples contaminated with As at a high level were obtained from Songchon abandoned mine, and the content of arsenic and heavy metals as well as physicochemical properties and mineral composition were investigated. In addition, two sets of sequential extraction methods were applied to analyze chemical speciations of arsenic and heavy metals to expect their leachability and mobility in geoenvironment. Based on these geochemical data of arsenic and heavy metal contaminants, column-type experiments on the bioleaching of arsenic were undertaken. Subsequently, experiments on the hybrid process incorporating bioleaching and electrokinetics were accomplished and its removal efficiency of arsenic was compared with that of the individual electrokinetic process. With the results, finally, the feasibilty of the hybrid technnology was evaluated. The arsenic removal efficiencies of the individual electrokinetic process (44 days) and the hybrid process incorporating bioleaching (28 days) and electrokinetics (16 dyas) were measured 57.8% and 64.5%, respectively, when both two processes were operated in an identical condition. On the contrary, the arsenic removal efficiency during the bioleaching process (28 days) appeared relatively lower (11.8%), and the result indicates that the bioleaching process enhanced the efficacy of the electrokinetic process as a result of mobilization of arsenic rather than removed arsenic by itself. In particular, the arsenic removal rate of the electrokinetics integrated with bioleaching was observed over than 2 times larger than that obtained by the electrokinetics alone. From the results of the study, if the bioleaching which is considered a relatively economic process is applied sufficiently prior to electrokinetics, the removal efficiency and rate of arsenic can be significantly improved. Consequently, the study proves the feasibility of the hybrid process integrating both technologies.

Assessment of the Cause and Pathway of Contamination and Sustainability in an Abandoned Mine (폐광산 오염원인 분석 및 오염경로, 향후 지속가능성에 대한 평가)

  • Kim, Min Gyu;Kim, Ki-Joon;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.28 no.3
    • /
    • pp.411-429
    • /
    • 2018
  • Daeyoung mine (also called "Daema mine") produced gold and silver from mainly gold- and silver-bearing quartz veins. The mine tailings are a waste hazard, but most of the tailings were swept away or dispersed throughout the area around the mine long before the tailing dump areas were transformed into agricultural land. Soil liner and protection facilities, such as retaining walls, were constructed in the mine area to prevent the loss of tailings. The content of the tailings is 3,424.41~3,803.61 mg/kg, which exceeds the safety standard by a factor of 45. In addition, contamination was detected near agricultural areas and in the sediments in downstream drainage channels. A high level of As contamination was concentrated near the waste tailings yard; comparaable levels were detected in agricultural areas close to streams that ran through the waste dump yard, whereas the levels were much lower in areas far from the streams. The contamination in stream sediments showed a gradual decrease with distance from the mine waste yard. Based on these contamination patterns, we concluded that there are two main paths that affect the spread of contaminants: (1) loss of mine waste, and (2) the introduction of mine waste into agricultural areas by floods after transportation by streams. The agricultural areas contaminated by mass inflow of mine waste can act as contamination sources themselves, affecting other agricultural areas through the diffusion of contaminants. At present, although the measured effect in minimal, sediments in streams are contaminated by exposed mine waste and surface liners. It is possible for contaminants to diffuse or spread into nearby areas if heavy elements trapped in soil grains in contaminated agricultural areas leach out as soil solution or contaminant particles during diffusion into the water supply.

Geochemical Characteristics and Heavy Metal Pollutions in the Surface Sediments of Oyster Farms in Goseong Bay, Korea (고성만 굴 양식장 표층퇴적물의 지화학적특성과 중금속 오염에 관한 연구)

  • Kang, Ju-Hyun;Lee, Sang-Jun;Jeong, Woo-Geon;Cho, Sang-Man
    • The Korean Journal of Malacology
    • /
    • v.28 no.3
    • /
    • pp.233-244
    • /
    • 2012
  • Goseong bay, located in southeast sea of Korea with an area of 2,100 ha, is a semi-enclosed bay well-known for oyster farming cultured in an extended range of 148 ha. The objective of this study is to provide the fundamental data in order to manage the effective sea area. A total 26 of surface sediment were collected from Goseong bay to evaluate their sedimentary environment and heavy metals. The loss on Ignition (LOI), C/N ratio, acid volatile sulfide (AVS) and heavy metals were analyzed. loss on ignition (LOI) of surface sediment range from 1.00% to 3.03% (average 2.00%). The carbonate content ranges from 0.52% to 4.29% (average 2.37%). C/N ratio of organic matter showed that most part of organic matter comes from neighboring continent. Acid volatile sulfide (AVS) value of surface sediment from 0.02 mg/g to 1.43 mg/g (average 0.24 mg/g). A ten element of surface sediments (Al, As, Cd, Cr, Cu, Hg, Ni, Pb, V, Zn) were calculated by enrichment factor (Ef) and the results show that some areas are highly polluted with respect Cu and Hg. The correlation matrix displays the existence of remarkable levels of correlation with both positive and negative values among different variable pairs. LOI and AVS showed both positive values. LOI and AVS values falls under 2% and 1%. Therefore, Goseong bay showed good in quality of sediment.

The Effect of Heavy Metal Content on the Decomposition of Plant Litter in the Abandoned Mine (폐광지 분포 식물 낙엽의 분해에 미치는 중금속의 영향)

  • Shim, Jae-Kuk;Son, Ji-Hoi;Shin, Jin-Ho;Yang, Keum-Chul
    • Korean Journal of Environment and Ecology
    • /
    • v.24 no.3
    • /
    • pp.279-285
    • /
    • 2010
  • This study was conducted to evaluate the differences between the heavy metal contaminated and non-contaminated Artemisia princeps var. orientalis and Equisetum arvense in litter decomposition processes. The plant samples were collected from abandoned mine tailings and control sites in Cheongyang, South Korea. The abandoned mine tailings have high heavy metal concentration and low soil organic matter contents. The heavy metal contents of mine tailings were about 13 and 28 times higher in As and Cd, compared to those in control soils. Also, the contents of the Cr, Ni and Zn in mine tailings were about 3 to 6 times higher than those in control soil. Samples of two plant species from mine tailings have high heavy metal concentrations compared to those from control sites. The leaf of A. princeps var. orientalis and shoot of E. arvense collected from mine tailings have approximately 23 and 58 times more in As, and 25 and 11 times more in Cd. The mass loss rates of plant litter from mine tailings were slower than those from control sites. During the experimental period, the decomposition of A. princeps var. orientalis leaf from mine tailings and control site showed 50.4% and 65.7% mass loss on the control soil area, respectively. The decomposition of A princeps var. orientalis leaf from mine tailings and control site showed 31.6% and 57.5% mass loss on the mine tailings area, respectively. The decomposition of A. princeps var. orientalis stem from mine tailings and control site showed similar patterns with their leaf decomposition. The decomposition of E. arvense shoot from mine tailings and control site showed 77.8% and 89.3% mass loss on the control soil area, respectively. The decomposition of E. arvense shoot from mine tailings and control site showed 67.6% and 82.1% mass loss on the mine tailings area, respectively. Therefor, the higher contents of heavy metals showed slow decomposition. The results suggested that heavy metal contamination affected the plant litter decomposition processes.

Mechanisms of Immobilization and Leaching Characteristics of Arsenic in the Waste Rocks and Tailings of the Abandoned Mine Areas (폐광산 지역 폐광석 및 광미에서 비소의 고정 메커니즘과 용출특성)

  • Kang Min-Mu;Lee Pyeong-Koo
    • Economic and Environmental Geology
    • /
    • v.38 no.5 s.174
    • /
    • pp.499-512
    • /
    • 2005
  • EPMA determined that Fe(Mn)-(oxy)hydroxides and well-crystallized Fe-(oxy)hydroxides and could contain a small amount of As $(0.3-11.0\;wt.\%\;and\;2.1-7.4\;wt.\%\;respectively)$. Amorphous crystalline Fe-(oxy) hydroxide assemblages were identified as the richest in As with $28-36\;wt.\%$. On the ternary $As_2O_5-SO_3-Fe_2O_3$ diagram, these materials were interpreted here as 'scorodite-like'. Dissolved As was attenuated by the adsorption on Fe-(oxy) hydroxides and Fe(Mn)-(oxy) hydroxides and/or the formation of an amorphous Fe-As phase (maybe scorodite: $FeAsO_4\cdot2H_2O$). Leaching tests were performed in order to find out leaching characteristics of As and Fe under acidic conditions. At the initial pHs 3 and 5, As contents dissolved from tailings of the cheongyang mine significantly increased after 7 days due to the oxidation of As-bearing secondary minerals (up to ca. $2.4\%$ of total), while As of Seobo mine-tailing samples was rarely released (ca. $0.0-0.1\%$ of total). Dissolution experiments at an initial pH 1 liberated a higher amount of As (ca. $1.1-4.2\%$ of total for Seobo tailings, $1.5-14.4\%$ of total for Cheongyang tailings). In addition, good correlation between As and Fe in leached solutions with tailings was observed. The kinetic problems could be the important factor which leads to increasing concentrations of As in the runoff water. Release of As from Cheongyang tailings can potentially pose adverse impact to surface and groundwater qualities in the surrounding environment, while precipitation of secondary minerals and the adsorption of As are efficient mechanisms for decreasing the mobilities of As in the surface environment of Seobo mine area.

Identification of soil Remedial Goal due to Arsenic in Soil near Abandoned Mine- Approach to Regarding Future Land Use - (폐광산 지역의 비소오염에 대한 복원목표 설정 - 미래 토지용도를 고려한 접근방법 -)

  • 이효민;윤은경;최시내;박송자;황경엽;조성용;김선태
    • Journal of Korea Soil Environment Society
    • /
    • v.3 no.2
    • /
    • pp.13-29
    • /
    • 1998
  • Recently, It is increasing popularity to research on the soil remediation in aspect of management by reason of the hazardous impact on the contaminated soil in Korea. It was investigated high levels of arsenic salts in soil near abandoned five mines(Darak, Daduk, Jingok, Dalsung, Ilkwang) located in Youngnam area. Arsenic, classified as group A(Human Carcinogens) from IRIS, have shown statistically significant increment in skin cancer with oral exposure. This paper was conducted to predict excess cancer risk value (to the skin cancer) based on multiple pathway such as soil ingestion, dermal uptake and food(plant) ingestion contaminated by arsenic, and also, to identify the remedial goal regarded in future land use. The mine having the highest arsenic level was Daduk(mean : 1950mg/kg) and the next rank was Jingok(1690mg/kg), Ilkwang(352.37mg/kg), Dalsung(86.08mg/kg), Darak(0.83mg/kg). The chronic daily intake to the multiple exposure were calculated using Monte-Carlo simulation regarded in future land use and used q: value was $1.5(mg/kg/day)^{-1}$ to the oral proposed by IRIS(1997). The computated excess cancer risk 95th value to all the mine regarding future land use as residential and rural area were more than $10^{-4}$. If the level of acceptable risk is aimed for 1$\times$$10^{-6}$, it could be used Darak as commercial and industrial area without soil remediation due to the lowest risk value(6$\times$$10^{-8}$ and 3$\times$$10^{-8}$). Computated remedial goal based on 1$\times$$10^{-6}$ of acceptable risk to the future land use as the residential, rural, commercial and industrial area were 0.02mg/kg, 0.003mg/kg, 97.31mg/kg and 194.62mg/kg, respectively.

  • PDF