• Title/Summary/Keyword: 평형수처리장치

Search Result 58, Processing Time 0.022 seconds

선박평형수 처리기술 개발방향

  • Choe, Won-Jin;Jeon, Seung-Hwan
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2018.05a
    • /
    • pp.187-188
    • /
    • 2018
  • 2004년 체결된 평형수관리협약은 2016년 9월 비준되어 2017년 발효 예정이었다. 그러나 발효 직전, 물리적으로 모든 선박에 평형수 처리장치를 설치하기 어렵다는 의견에 따라 2년 유예되었다. 따라서 수만 척의 선박은 2024년까지 평형수 처리장치를 설치해야 하며, 해당 시장의 규모는 약 40조원까지 성장할 것으로 추정된다. 그러나 우리나라에서 개발한 현재 평형수 처리장치는 IMO 형식승인을 받은 제품만 있을 뿐 USCG 형식승인을 받은 제품이 없어 평형수 처리시장을 선점하기에 어려움이 있다. 따라서 본 연구에서는 USCG 성능기준을 만족하는 평형수 처리기술 개발을 위하여 IMO와 USCG 성능기준의 차이를 비교하고, 현재 사용되고 있는 선박평형수 처리장치의 국내 및 세계 기술 수준을 비교 분석하여 자외선 발광 다이오드 및 이산화티타늄을 이용한 평형수 처리장치 개발방향을 제시한다.

  • PDF

Ballast Water Treatment System using TiO2 Photocatalysts and UV lamps (광촉매와 자외선 램프를 이용한 선박평형수 처리장치)

  • Lee, Jung-Yoon;Cha, Sang-Wook;Kim, Il-Kwon;Park, Dae-Won;Kil, Gyung-Suk
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2011.10a
    • /
    • pp.70-70
    • /
    • 2011
  • 본 논문에서는 에너지 절감형 선박평형수 처리장치를 개발하기 위하여 $TiO_2$ 광촉매와 자외선 램프를 적용한 선박평형수 처리장치에 대하여 기술하였다. 제작된 처리장치의 정격 출력과 처리용량은 각각 2.16 kW 및 $100m^3/h$이다. 처리장치의 살균효율은 플랑크톤을 사용하여 IMO 규정에 따라 평가하였다. 실험결과로부터 시제작 선박평형수 처리장치의 살균효율은 동물성 플랑크톤에서 99.7 %, 식물성 플랑크톤에서 98.84 %로 나타났다.

  • PDF

Optimum Selection of BWMS type by AHP for BWMS Development (선박평형수 처리장치 개발시 AHP 기법을 이용한 최적 처리방식 선정에 관한 연구)

  • Lee, Sang Won;Kim, Dong Joon;Seo, Won Chul
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.19 no.1
    • /
    • pp.1-6
    • /
    • 2016
  • Ballast water in ship operation is essential for a safe voyage. However ballast water can contain unwanted organisms that are the cause of disturbing the ecosystem by the transfer of potential invasive species. To prevent the destruction of the environment, the International Convention for the Control and Management of Ship's Ballast Water and Sediments(BWM Convention) was adopted in 2004. BWMS (Ballast Water Management System) has been developed to prevent the transportation of organisms to another region in order to fulfill the requirements IMO (International Maritime Organization) regulations. Nowadays there are about 50 approved Ballast Water Management Systems of various types globally. The most common BWMS types are UV (Ultra Violet), Electrolysis and Ozone. Among these types there are many difficulties in determining the optimum type of BWMS which can be suitable for the user and designer's requirements. The main objective of this research is to select the best BWMS type by using AHP. To apply AHP, the most important criteria for the BWMS development are derived by users and designers. From our results, we can give a guide BWMS type to the developers of BWMS.

직접식 전기분해장치를 이용한 선박평형수 처리시스템 개발에 관한 연구

  • Park, Ok-Yeol;Gong, Gil-Yeong;Mun, Jang
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2015.07a
    • /
    • pp.90-92
    • /
    • 2015
  • 국제해사기구는 선박평형수를 통한 수중생물의 이동을 막기 위해, 2004년 선박평형수와 침전물 통제 및 관리를 위한 국제협약을 채택하였으며 2015년 5월12일 현재 73개의 처리장치가 최종승인을 받았거나 진행중이다. 선박평형수 처리기술은 전기분해, 오존식, 자외선식 등 여러 기술이 개발되었으나 비용 및 효율면에서 전기분해방식이 타 방식에 비하여 좋고 간접식과 직접식으로 나누어지며 직접식이 간접식에 비해 우수하다. 본 논문에서는 직접식 전기분해 장치를 이용한 선박평형수 처리시스템 개발에 관해 연구하였다.

  • PDF

Development of the Electrolysis Ballast Water Treatment System and Test (직접 전기분해식 선박평형수 처리장치 개발과 시험에 관한 연구)

  • Bag, Og-Yeol;Moon, Jang;Park, Jun-Mo;Kong, Gil-Young
    • Journal of Navigation and Port Research
    • /
    • v.41 no.3
    • /
    • pp.79-86
    • /
    • 2017
  • Ballast water filled into and discharged from the ballast tank of a ship has a negative impact on local marine environment due to various aquatic organisms contained therein. The IMO developed and adopted "The International Convention for the Control and Management of Ships Ballast Water and Sediments, 2004" with the purpose of protecting the marine environment from transfer of harmful aquatic organisms in ballast water carried by ships. The IMO BWM Convention was approved in September 2016 and ships must be equipped with ballast water management system after September 2017. Ships' ballast water treatment methods are divided into using active substances as electrolytic type, ozone type, chemical dosing type and using physical treatment type as filter type, ultraviolet type. It is also used with a combination of two methods. Electrolysis is superior in terms of cost and efficiency. In this study, basic principles, components, and land base test contents of electrolysis ballast water treatment system, a direct electrolyzed ballast water treatment system, were examined. Land base test was conducted with 300m3/h capacity device at the KIOST Geoje plant where the government test facility was installed. This test validated that the system meets IMO standards.

Consideration on the Concentration of the Active Substances Produced by the Ballast Water Treatment System (선박평형수 처리장치의 활성물질 농도에 관한 고찰)

  • Kim, Eun-Chan;Oh, Jeong-Hwan;Lee, Seung-Guk
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.15 no.3
    • /
    • pp.219-226
    • /
    • 2012
  • The International Maritime Organization (IMO) adopted the International Convention for the Control and Management of Ships' Ballast Water and Sediments in 2004 to prevent the transfer of aquatic organisms via ballast water. Thirty-four ballast water treatment systems were granted IMO active substance basic approval, among which twenty systems were granted final approval. This paper is an in-depth consideration of the mechanism principles of the treatment systems that received active substance basic or final approval from IMO, and on the concentration of Total Residual Oxidant (TRO). The TRO maximum allowable discharge concentration was reduced by neutralization equipment, resulting with a concentration lower than 0.2 ppm. However, between various treatment systems TRO maximum allowable dosage showed large differences, ranging from 1 to 15 ppm. The discrepancies of treatment allowable dosage concentration between different treatment systems are largely due to the properties of species and water conditions such as the temperature and turbidity, rather than the characteristics of treatment systems and the type or presence of filters etc.

A Study on the Difference in Ballasting Time Arising from the Installation of an Ultraviolet Ballast Water Management System on Existing Ships (현존선에 자외선 평형수처리장치 설치로 인한 평형수 처리시간 변화에 관한 연구)

  • Seo, Kil-Cheon;Lee, Kyoung-Woo;Rho, Beom-Seok;Cho, Ik-Soon;Lee, Won-Ju;Pham, Van Chien;Choi, Jae-Hyuk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.5
    • /
    • pp.576-585
    • /
    • 2020
  • This study quantitatively investigated the increase in ballasting time through numerical calculations when an ultraviolet (UV) ballast water management system (BWMS) is installed on an existing vessel. The calculation results indicate that the ballasting time of a gas carrier having 55,000 dead weight tonnage was 2.152 hours without installation of the UV BWMS and implementation of a flow control function. Ballasting time increased by 14.2% after installing the UV BWMS, and it increased by 20.4% with both its installation and implementation of a flow control function. If actual conditions are taken into account, ballasting time after installing the UV BWMS is estimated to increase by at least 30% compared with current ballasting time. Therefore, when concerned parties select a UV type BWMS, it is advisable for them to minimize ship operation losses from an increase in ballasting time by considering the capacity of the actual ballast pumps on board and the flow energy loss of the UV BWMS. Additionally, it is recommended that a BWMS with larger capacity, larger pipes, and pipes with inside coatings be used to minimize the increase in ballasting time after installation of the BWMS.

A study on the strategy of concerned parties with regard to the performance standards and implementation schedule of ballast water treatment systems (평형수처리장치 성능기준 및 시행시기 차이에 의한 관련 당사자들의 대응전략 연구)

  • Kim, Kyong-Min;Kim, Hoi-Jun;Ha, Weon-Jae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.3
    • /
    • pp.325-332
    • /
    • 2014
  • In installing ballast water treatment system, the cost of the system is high and many technical aspects are to be considered and also it takes significant time to retro-fitting on the existing ships. In addition, in the current circumstance which the Ballast Water Management Convention has not been entered into force, the 28th IMO Assembly adopted a resolution to mediate the implementation schedule of the treatment systems. In the mean time, California State and New York State have declared more stringent discharge requirements of ballast water and are planning to implement them earlier than the schedule of the Convention. In these circumstances, the implication in the difference between ballast water treatment system manufacturers and ship owners need to be considered. In this study, through the review on the considerations when installing the system onboard, stringent requirements of United States of America, and determent or mediated implementation schedules of Convention and California and New York States, the author would like to suggest the strategy of concerned parties for anticipated entrry into force of the Convention and implementation of the stringent requirements of United States of America.

Consideration of the Procedure for IMO Approval of Ballast Water Treatment System that Make Use of Active Substances (활성물질을 사용하는 선박평형수 처리장치의 IMO 승인 절차 고찰)

  • Kim, Eun-Chan
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.11 no.4
    • /
    • pp.214-220
    • /
    • 2008
  • The Ballast Water Management Convention provides that ballast water treatment systems which make use of active substances shall be approved from IMO according to the procedure developed by the IMO. The Convention described that active substance means a substance or organism, including a virus or a fungus, that has a general or specific action on or against harmful aquatic organisms and pathogens. The Marine Environment Protection Committee of IMO gave basic approval to 13 ballast water management systems and final approval to 4 systems until October 2008. This paper considered the matter of procedure and documents of the basic and final approval based on the "Procedure for approval of ballast water management systems that make use of Active Substances (G9)" and "The Methodology for information gathering and the conduct of work of the GESAMP-BWWG" and summarized the specifications of the treatment systems which was granted the basic or final approval from IMO and raised several points.

  • PDF

A Study on the Sterilization Effect of Ballast Water according to the Combination of Types of Treatment Apparatus (선박평형수 처리장치의 조합에 따른 살균효과에 관한 연구)

  • Kang, Ah-Young;Kim, Sang-Pil;Song, Ju-Yeong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.412-417
    • /
    • 2015
  • The purpose of this study is to treat the ballast water by shear stress without an environmental pollution and to find out the optimal treatment conditions. The ballast water problem is issued up as the trade activated and the cargos mobilized. To improve this problem, International Marine Organization(IMO) make the rule about the ballast water treatment with specific restrictions. Although many countries have been studying about the ballast water treatment technology, there is almost no technology that can treat the microorganisms under $50{\mu}m$ without any secondary pollution. In this study, we tried to treat ballast water by applying shear stress as the physical treatment for the sterilization and tried to find out the optimal conditions including the 100% sterilizing rate and the best economic condition.