• Title/Summary/Keyword: 평행 케이블

Search Result 11, Processing Time 0.032 seconds

Evaluation of Wake Galloping for Inclined Parallel Cables by Two-Dimensional Wind Testes Tests (2차원 풍동실험을 통한 평행 경사 실린더의 웨이크 갤로핑 평가)

  • Kim, Sun-Joong;Kim, Ho-Kyung;Lee, Sang-Hoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.6
    • /
    • pp.763-775
    • /
    • 2011
  • The wake galloping phenomenon is evaluated for two cylinders via two-dimensional wind tunnel tests. The two cylinders are deployed parallel to the inclination of the vertical plane, which simulates the inclined stay cables of a cable-stayed bridge. The upstream and downstream displacements of the cylinder are observed with varying center distances between the two cylinders. The effect of structural damping on the mitigation of wake galloping is also investigated. The amplitude of the vibration is very sensitive to center distance between the two cylinders. The maximum amplitudes exceededthe allowable limit of the design guidelines for small center distances of less than or equal to six times the diameter of the cylinder. The overall results conformedto the conventional design practice for the wake galloping of parallel cables. It was found, however, that the increase in the damping was not effective in reducing the amplitude of the vibration in the wake galloping phenomenon.

Response of Cable-Buoy Systems to Directional Random Waves (다방향 불규칙파랑에 의한 케이블과 정체시스템의 반응)

  • Jeon, Sang-Soo;John W. Leonard
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.5 no.1
    • /
    • pp.25-38
    • /
    • 1993
  • Numerical models of directional wave spectra for the analysis of offshore structural cable responses are verified. Alternative spreading models are used to predict wave-induced flows in water and for mooring systems. Hydrodynamic wave forces upon cable are estimated. using a Morison formula encompassing considerations for drag and for inertial forces both parallel and tangential to the slope of the cable. Numerical analysis for directional random waves. including consideration of displacement and velocity, trajectory, phase plane response. and tension are shown for mooring system cable responses at both the tether point for a buoy and at the anchor point. The effects of wave forces far different drag coefficients, various significant wave heights, and selected wave parameters are considered in the analysis. For the specific systems considered in the examples, it is demonstrated that wave period and height as well as wave spreading function parameters and drag coefficients, have an important effect upon the dynamic responses of the cable-buoy systems.

  • PDF

Analysis of Characteristic Parameter in Medium Voltage Power Distribution Line for Power Line Communications (전력선 통신을 위한 고압 배전선로 특성 파라미터 해석)

  • Lee, Jae-Jo;Park, Hae-Soo;Lee, Won-Tae;Kim, Kwan-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.2029-2030
    • /
    • 2006
  • 본 논문에서는 22.9kV 고압 가공 배전선로를 고속 전력선 통신을 위한 통신 채널로 사용하기 위하여 전력선 통신 주파수 $2MHz{\sim}30MHz$ 대역에 대한 특성 파라미터를 해석하였다. 먼저 고압 배전선로에 주로 사용되는 ACSR-OC 케이블에 대한 구조를 분석하고 이의 특성 파라미터로부터 분포정수와 특성 임피던스를 구하였다. 또한 등각 사상법을 이용하여 유전체가 코팅된 평행 2선식 고압 배전선로의 정전용량 및 유효유전상수를 계산하였다. 이러한 결과를 바탕으로 고압 배전선로의 분포정수와 특성임피던스를 구하였으며, 특성임피던스는 케이블 단면적에 따라서 $470{\ell}{\sim}530{\ell}$ 사이의 분포를 나타내었다. 특히, 특성 임피던스는 지면을 완전 전기도체로 가정할 경우에 비하여 실제 지면의 도전율과 유전상수를 고려할 때 20MHz 이하의 대역에서 보다 높은 값을 갖는 것을 확인하였다.

  • PDF

Development of the model and the hybrid algorithm toy analyzing the dynamic heat conduction in the CPES system (CPFS 내에서 일어나는 동적 열전도 현상을 해석하기 위한 수식 및 혼합알고리즘 개발)

  • Yun Jongpil;Kwon Seong-Pil;Yoon En Sup
    • 한국가스학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.120-125
    • /
    • 2003
  • 본 연구는 원자력 발전소에 있는 방화벽의 케이블 관통부위에 설치된 CPFS(Cable Penetration Fire Stop)시스템 안에서 일어나는 동적열전달 현상을 3 차원으로 나타낼 수 있는 시험시뮬레이터에 사용될 수학적 모델과 수치계산 알고리즘의 개발에 관한 것이다. CPFS 내에서 일어나는 열전도 현상을 나타내는 지배방정식은 주어진 조건들 하에서 포물선형 편미분방정식(Parabolic PDE)으로 나타난다. 문제를 단순화하기 위해 열의 흐름을 두 성분으로 나누었다 즉, 케이블과 평행한 선을 따라서 일어나는 열전도와 벽면과 평행한 평면 위에서 일어나는 열전도로 나누었다. 먼저 선을 따라 일어나는 동적 열전도 현상을 나타내는 PDE를 연속과완화(SOR: Successive Over-Relaxation)를 적용하여 유한한 불연속점들에 대한 연립 상미분방정식(ODE)으로 전환했고, 그 연립방정식은 ODE Solver 를 이용하여 풀 수 있었다. 둘째로, 각 불연속 점에 위치한 평면 위에서 일어나는 열전도를 계산하기 위해서, 유한요소의 합을 근사식으로 이용하여 PDE를 ODE로 전환해서 계산하는 유한요소법(Finite Element Method)이 이용된다. 여기서 시간과 공간의 함수 T(x, y, z, t)인 온도는 각 선의 점들과 각 평면의 요소들에 대해서 일정한 시간간격으로 초기온도와 경계온도를 업데이트하여 계산을 반복한다. 이러한 일련의 계산결과를 바탕으로 CPFS 시스템 내에서의 온도분포의 동적인 변화를 해석한다. 결론적으로 관통하는 케이블이 CPFS 시스템의 온도분포에 매우 중요한 역할을 한다는 것을 알 수 있다. 시뮬레이션 결과는 CPFS 내의 온도분포를 쉽게 이해할 수 있도록 3 차원 그래픽으로 나타냈으며, 상용소프트웨어 FEMLAB 으로 계산한 결과와 비교해서 개발된 모델과 계산 알고리즘의 정당성을 보였다. 맞이하고 있음을 볼 수 있다. 국내광업이 21C 급변하는 산업환경에 적응하여 생존하기 위해서는 각종 첨단산업에서 요구하는 소량 다품종의 원료광물을 적기에 공급 할 수 있는 전문화된 기술력을 하루속히 확보해야 하며, 이를 위해 고품위의 원료광물 확보를 위한 탐사 및 개발을 적극 추진하고 가공기술의 선진화를 위해 선진국과의 기술제휴 등 자원산업 글로벌화 정책이 절실히 요구되고 있음을 알 수 있다. 또한 삶의 질을 향상시키려는 현대인의 가치관에 부합하기 위해서는 각종 소비제품의 원료를 제공하는 광업의 본래 목적 이외에도 자연환경 훼손을 최소화하며 개발 할 수밖에 없는 구조적인 어려움에 직면할 수밖에 없다. 이처럼 국내광업이 안고 있는 여러 가지 난제들을 극복하기 위해서는 업계와 정부가 합심하여 국내광업 육성의 중요성을 재인식하고 새로운 마음가짐으로 관련 정책을 수립 일관성 있게 추진해 나가야 할 것으로 보인다.의 연구 결과를 요약하면 다음과 같다. 첫째, 브랜드 이미지와 서비스 품질과의 관계에서 브랜드이미지는 서비스 품질의 선행변수가 될 수 있음을 증명하였으며 4개 요인의 이미지 중 사풍이미지를 제외한 영업 이미지, 제품 이미지, 마케팅 이미지가 서비스 품질에 영향을 미치고 있음을 알 수 있다. 둘째, 지각된 서비스 품질과 가격 수용성과의 관계에서, 서비스 품질은 최소 가격에 신뢰서비스 요인에서 정의 영향을 미치고 있으나 부가서비스, 환경서비스에서는 역의 영향을 미침을 알수 있고, 최대 가격에 있어서는 욕구서비스 요인은 정의 영향을 미치지만 부가서비스의 경우에는 역의 영향을 미치고 있음을 알 수 있다. 셋째, 서비스품질과 재 방문 의도와의 관계에 있어서 서비스품질은 재 방문 의도에 영향을 미침을 알 수 있다. 따라서 브랜드 이미지는 서비스품질의 선행변수가 될 수 있으며, 서비스품질은 가격 수용성과 재방문 의도에 영향을 미치고 있음을 알 수

  • PDF

Behavior Analysis of PPWS Sockets for Suspension Bridges Considering Frictional Contact (마찰 접촉을 고려한 현수교 PPWS용 소켓의 거동 해석)

  • Yoo, Hoon;Lee, Sung-Hyung;Seo, Ju-Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.4
    • /
    • pp.1281-1293
    • /
    • 2013
  • A sophisticated finite element model is illustrated to analyze the behavior of Prefabricated Parallel Wire Strand(PPWS) sockets for main cables of suspension bridges. An orthotropic model is proposed for the casting material by considering both effects of individual wires and a casting alloy, and the contact between surfaces of a socket and a casting alloy is idealized by using the Coulomb friction and the surface-based contact model. The proposed FE model is verified by comparing the strain distributions obtained from the tensile test and FE analysis. The mechanical behavior of a socket is investigated with respect to the variation of the frictional coefficient. The result shows that the friction between surfaces significantly diminishes the stress concentration of a socket and a casting alloy, and the normal stress from the design equation represents the averaged value of the upper and lower quartiles in the distribution of contact stresses between a socket and a casting alloy.

Modeling and analysis of dynamic heat transfer in the cable penetration fire stop system by using a new hybrid algorithm (새로운 혼합알고리즘을 이용한 CPFS 내에서의 일어나는 동적 열전달의 수식화 및 해석)

  • Yoon En Sup;Yun Jongpil;Kwon Seong-Pil
    • Journal of the Korean Institute of Gas
    • /
    • v.7 no.4 s.21
    • /
    • pp.44-52
    • /
    • 2003
  • In this work dynamic heat transfer in a CPFS (cable penetration fire stop) system built in the firewall of nuclear power plants is three-dimensionally investigated to develop a test-simulator that can be used to verify effectiveness of the sealant. Dynamic heat transfer in the fire stop system is formulated in a parabolic PDE (partial differential equation) subjected to a set of initial and boundary conditions. First, the PDE model is divided into two parts; one corresponding to heat transfer in the axial direction and the other corresponding to heat transfer on the vertical planes. The first PDE is converted to a series of ODEs (ordinary differential equations) at finite discrete axial points for applying the numerical method of SOR (successive over-relaxation) to the problem. The ODEs are solved by using an ODE solver In such manner, the axial heat flux can be calculated at least at the finite discrete points. After that, all the planes are separated into finite elements, where the time and spatial functions are assumed to be of orthogonal collocation state at each element. The initial condition of each finite element can be obtained from the above solution. The heat fluxes on the vertical planes are calculated by the Galerkin FEM (finite element method). The CPFS system was modeled, simulated, and analyzed here. The simulation results were illustrated in three-dimensional graphics. Through simulation, it was shown clearly that the temperature distribution was influenced very much by the number, position, and temperature of the cable stream, and that dynamic heat transfer through the cable stream was one of the most dominant factors, and that the feature of heat conduction could be understood as an unsteady-state process.

  • PDF

Development of TDR-based Water Leak Detection Sensor for Seawater Pipeline of Ship (시간영역반사계를 이용한 해수배관시스템의 누수 탐지용 센서 개발 연구)

  • Hwang, Hyun-Kyu;Shin, Dong-Ho;Kim, Heon-Hui;Lee, Jung-Hyung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.6
    • /
    • pp.1044-1053
    • /
    • 2022
  • Time domain reflectometry (TDR) is a diagnostic technique to evaluate the physical integrity of cable and finds application in leak detection and localization of piping system. In this study, a cable-shaped leak detection sensor was proposed using the TDR technique for monitoring leakage detection of ship's engine room seawater piping system. The cable sensor was developed using a twisted pair arrangement and wound by an absorbent material. The availability and performance of the sensor for leak detection and localization were evaluated on a lab-scale pipeline set up. The developed sensor was installed onto the pipes and flanges of the lab-scale set up and various TDR waveforms were acquired and analyzed according to the dif erent variables including the number of twists and sheath thickness. The result indicated that the twisted cable sensor was able to produce clear and smooth signal as compared to the TDR sensor with a parallel arrangement. The optimal number of twist was determined to be above 10 per the unit length. The optimal diameter of sheath thickness that results in the desired sensitivity was determined to be ranging from 80% up to 120% of the diameter of the conductor. The linear regression analysis for estimation of leak localization was carried out to estimate the location of the leakage, and the result was a determination coefficient of 0.9998, indicating a positive relationship with the actual leakage point. The proposed TDR based leak detection method appears to be an effective method for monitoring leakage of ship's seawater piping system.

Investigation and Processing of Seismic Reflection Data Collected from a Water-Land Area Using a Land Nodal Airgun System (수륙 경계지역에서 얻어진 육상 노달 에어건 탄성파탐사 자료의 고찰 및 자료처리)

  • Lee, Donghoon;Jang, Seonghyung;Kang, Nyeonkeon;Kim, Hyun-do;Kim, Kwansoo;Kim, Ji-Soo
    • The Journal of Engineering Geology
    • /
    • v.31 no.4
    • /
    • pp.603-620
    • /
    • 2021
  • A land nodal seismic system was employed to acquire seismic reflection data using stand-alone cable-free receivers in a land-river area. Acquiring reliable data using this technology is very cost effective, as it avoids topographic problems in the deployment and collection of receivers. The land nodal airgun system deployed on the mouth of the Hyungsan River (in Pohang, Gyeongsangbuk Province) used airgun sources in the river and receivers on the riverbank, with subparallel source and receiver lines, approximately 120 m-spaced. Seismic data collected on the riverbank are characterized by a low signal-to-noise (S/N) and inconsistent reflection events. Most of the events are represented by hyperbola in the field records, including direct waves, guided waves, air waves, and Scholte surface waves, in contrast to the straight lines in the data collected conventionally where source and receiver lines are coincident. The processing strategy included enhancing the signal behind the low-frequency large-amplitude noise with a cascaded application of bandpass and f-k filters for the attenuation of air waves. Static time delays caused by the cross-offset distance between sources and receivers are corrected, with a focus on mapping the shallow reflections obscured by guided wave and air wave noise. A new time-distance equation and curve for direct and air waves are suggested for the correction of the static time delay caused by the cross-offset between source and receiver. Investigation of the minimum cross-offset gathers shows well-aligned shallow reflections around 200 ms after time-shift correction. This time-delay static correction based on the direct wave is found essential to improving the data from parallel source and receiver lines. Data acquisition and processing strategies developed in this study for land nodal airgun seismic systems will be readily applicable to seismic data from land-sea areas when high-resolution signal data becomes available in the future for investigation of shallow gas reservoirs, faults, and engineering designs for the development of coastal areas.

Development of Buried Type TDR Module for Leak Detection from Buried Pipe (매설관 주변부 누수 탐지를 위한 매설형 TDR 모듈 개발)

  • Hong, Wontaek
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.11
    • /
    • pp.31-37
    • /
    • 2021
  • To prevent accidents due to the cavities and loosened layers formed due to water leakage from the deteriorated buried pipes, evaluation of the changes in water contents around the buried pipes is required. As a method to evaluate the water contents of the soils, time domain reflectometry (TDR) system can be adopted. However, slender electrodes used in standard TDR probe may be damaged when buried in the ground. Thus, in this study, buried type TDR module was developed for the evaluation of the water contents with maintaining required shape of the electrodes in the ground. The TDR module is composed of three electrodes connected to the core conductor and outer conductor and a casing to prevent deformation and maintain alignment of the electrodes in the ground. For the verification of TDR waveforms measured using the TDR module, comparative analysis was conducted with the TDR waveforms measured using the standard TDR probe, and the relationship between the volumetric water content of the soils and the travel time of the guided electromagnetic wave was constructed. In addition, a model test was conducted to test the applicability of the buried type TDR module, and the experimental result shows that the TDR module clearly evaluates the changes in volumetric water contents due to the leakage from the modeled buried pipe. Therefore, the buried type TDR module may be effectively used for the health monitoring of the buried pipe and the evaluation of the water contents around the pipes buried in the urban pavements.

Dynamic Response of Tension Leg Platform (Tension Leg Platform의 동적응답에 관한 연구)

  • Yeo, Woon Kwang;Pyun, Chong Kun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.5 no.1
    • /
    • pp.21-30
    • /
    • 1985
  • The tension leg platform (TLP) is a kind of compliant structures, and is also a type of moored stable platform with a buoyancy exceeding the weight because of having tensioned vertical anchor cables. In this paper, among the various kinds of tension leg structures, Deep Oil Technology (DOT) TLP was analyzed because it has large-displacement portions of the immersed surface such as vertical corner pontoons and small-diameter elongated members such as cross-bracing. It also has results of hydraulic model tests, comparable with theorectical analysis. Because of the vertical axes of symmetry in the three vertical buoyant legs and because there are no larger horizontal buoyant members between these three vertical members, it was decided to develop a numerical algorithm which would predict the dynamic response of the DOT TLP using the previously developed numerical algorithm Floating Vessel Response Simulation (FVRS) for vertically axisymmetric bodies of revolution. In addition, a linearized hydroelastic Morison equation subroutine would be developed to account for the hydrodynamic pressure forces on the small member cross bracing. Interaction between the large buoyant members or small member cross bracings is considered to be negligible and is not included in the analysis. The dynamic response of the DOT TLP in the surge mode is compared with the results of the TLP algorithm for various combinations of diffraction and Morison forces and moments. The results which include the Morison equation are better than the results for diffraction only. This is because the vertically axisymmetric buoyant members are only marginally large enough to consider diffractions effects. The prototype TLP results are expected to be more inertially dominated.

  • PDF