• Title/Summary/Keyword: 평행축

Search Result 120, Processing Time 0.019 seconds

Study on the Improvement of a Grain Harvester (I) -Threshing Force of Rice- (수확기(收穫機)의 성능향상(性能向上)에 관(關)한 연구(硏究)(I) - 수도(水稻)의 탈립저항력(脫粒抵抗力)에 관(關)하여)

  • Lee, Sang Woo;Hur, Yun Kun
    • Korean Journal of Agricultural Science
    • /
    • v.8 no.2
    • /
    • pp.224-230
    • /
    • 1981
  • Threshing forces of seven varieties, that is, three Japonica type varieties-Irri 348, Irri 345, and Milyang 15, and four Indica type varieties-Milyang 23, Irri 342, Suweon 294 and Suweon 287-, which have been cultivated in the standard fertilization field being at Chungnam Provincial Office of Rural Development, Youseong, Chungnam-do, they were measured every other day in the period from September 28 to October 20 which were included the proper harves ting time. Also the threshing forces were checked in three-dimensional directions. Relationships between threshing forces and moisture contents of the unthreshed rice were examined in the laboratory as dried in the natural condition. The results of this study were as follows; 1. The mean threshing force of Japonica type varieties was about 1969r. and that of Indica type varieties was about 113gr. when external force was loaded in the direction parallel to the grain. 2. The threshing force bent to the grain was about 9.8through 28.2gr. equal to 7 through 21 percent to the threshing force parallel to the grain in Indica type varieties meanwhile about 59.8 through 115.0gr equal to 33 through 50 percent in Japonica type varieties. 3. Under the warmer temperature than $0^{\circ}C$, the change of threshing forces was not great in this experimental period on the harvesting dates. 4. The threshing force decreased s lightly as moisture content decreased in natural drying under the shade after cutting. 5. The threshing force of the lower portion was a little biger than that of the upper portion in an ear.

  • PDF

The Dosimetric Data of 10 MV Linear Accelerator Photon Beam for Total Body Irradiation (전신 방사선조사를 위한 10MV 선형가속기의 선량측정)

  • Ahn Sung Ja;Kang Wee-Saing;Park Seung Jin;Nam Taek Keun;Chung Woong Ki;Nah Byung Sik
    • Radiation Oncology Journal
    • /
    • v.12 no.2
    • /
    • pp.225-232
    • /
    • 1994
  • Purpose : This study was to obtain the basic dosimetric data using the 10 MV X-ray for the total body irradiation. Materials and Methods : A linear accelerator photon beam is planned to be used as a radiation source for total body irradiation (TBI) in Chonnam University Hospital. The planned distance from the target to the midplane of a patient is 360cm and the maximum geometric field size is 144cm x 144cm. Polystyrene phantom sized $30{\times}30{\times}30.2cm^3$ and consisted of several sheets with various thickness, and a parallel plate ionization chamber were used to measure surface dose and percent depth dose (PDD) at 345cm SSD, and dose profiles. To evaluate whether a beam modifier is necessary for TBI, dosimetry in build up region was made first with no modifier and next with an 1cm thick acryl plate 20cm far from the polystyrene phantom surface. For a fixed sourec-chamber distance, output factors were measured for various depth. Results : As any beam modifier was not on the way of radiation of 10MV X-ray, the $d_{max}$ and surface dose was 1.8cm and $61\%$, respectively, for 345cm SSD. When an 1cm thick acryl plate was put 20cm far from polystyrene phantom for the SSD, the $d_{max}$ and surface dose were 0.8cm and $94\%$, respectively. With acryl as a beam spoiler, the PDD at 10cm depth was $78.4\%$ and exit dose was a little higher than expected dose at interface of exit surface. For two-opposing fields for a 30cm phantom thick phantom, the surface dose and maximum dose relative to mid-depth dose in our experiments were $102.5\%$ and $106.3\%$, respectively. The off-axis distance of that point of $95\%$ of beam axis dose were 70cm on principal axis and 80cm on diagonal axis. Conclusion: 1. To increase surface dose for TBI by 10MV X-ray at 360cm SAD, 1cm thick acrylic spoiler was sufficient when distance from phantom surface to spoiler was 20cm. 2. At 345cm SSD, 10MV X-ray beam of full field produced a satisfiable dose uniformity for TBI within $7\%$ in the phantom of 30cm thickness by two-opposing irradiation technique. 3. The uniform dose distribution region was 67cm on principal axis of the beam and 80cm on diagonal axis from beam axis. 4. The output factors at mid-point of various thickness revealed linear relation with depth, and it could be applicable to practical TBI.

  • PDF

Preliminary Results of Marine Heat Flow Measurements in the Chukchi Abyssal Plain, Arctic Ocean, and Constraints on Crustal Origin (북극 척치 해저평원의 해양지열관측 초기결과와 지각기원에 대한 의미)

  • Kim, Young-Gyun;Hong, Jong Kuk;Jin, Young Keun;Jang, Minseok;So, Byung Dal
    • The Journal of Engineering Geology
    • /
    • v.32 no.1
    • /
    • pp.113-126
    • /
    • 2022
  • The tectonic history of the Chukchi Abyssal Plain in the Amerasia Basin, Arctic Ocean, has not been fully explored due to the harsh conditions of sea ice preventing detailed observation. Existing models of the tectonic history of the region provide contrasting interpretation of the timing of formation of the crust (Mesozoic to Cenozoic), crust type (from hyper-extended continental crust to oceanic crust), and formation process (from parallel/fan-shaped rifting to transformation faulting). To help determine the age of the oceanic crust, the geothermal gradient was measured at three stations in the south of abyssal plain at depth of 2,160-2,250 m below sea level. Heat flow measurement stations were located perpendicular to the spreading axis over a 40 km-long transect. In-situ thermal conductivity measurement, corrected by the laboratory test, gave observed marine heat flows of 55 to 61 mW/m2. All measurements were taken during Arctic expeditions in 2018 (ARA09C expedition) and 2021 (ARA12C expedition) by the Korean ice-breaking research vessel (IBRV) Araon. Given the assumption of oceanic crust, the results correspond to formation in the Late Cretaceous (Mesozoic). The inferred age supports the hypothesis of formation activated by the opening of the Makarov Basin during the Late Mesozoic-Cenozoic. This would make it contemporaneous with rifting of the Chukchi Border Land immediately east of the abyssal plain. The heat flow data indicate the base of the gas hydrate stability zone is located 332-367 m below the seafloor, this will help to identify the gas hydrate-related bottom simulating reflector in the future seismic survey, as already identified on the Chukchi Plateau. Further geophysical surveys, including heat flow measurements, are required to increase our understanding of the formation process and thermal mantle structure of the abyssal plain.

The Crystal Structure of Bis(N-Methylphenazinium) Bis(Oxalato)Palladate(Ⅱ) (Bis(N-Methylphenazinium) Bis(Oxalato)Palladate(Ⅱ)의 결정구조)

  • Kim, Se Hwan;NamGung, Hae;Lee, Hyeon Mi
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.11
    • /
    • pp.827-832
    • /
    • 1994
  • The crystal structure of bis(N-methylphenazinium) bis(oxalato)palladate(II) has been determined by X-ray crystallography. Crystal data: ((C_{13}H_{11}N_2)_2[Pd(C_2O_4)_2]) $M_w$ = 672.93, Triclinic, Space Group P1 (No = 2), a = 7.616(8), b = 9.842(3), c = $20.335(7)\AA$, $\alpha$ = 103.53(3), $\beta$ = 90.00(5), $\gamma$ = $112.38(5)^{\circ}$, Z = 2, $V = 1363(2){\AA}^3\;D_c = 1.639\;gcm^{-3},\;{\mu} = 7.3\;cm^{-1},\;F(000) = 680.0$. The intensity data were collected with $Mo-K\alpha$ radiation (${\lambda}$= 0.7107\;\AA)$ on an automatic four-circle diffractometer with a graphite monochromater. The structure was solved by Patterson method and refined by full matrix least-square methods using Killean & Lawrence weights. The final R and S values were $R = 0.069,\;R_w = 0.050,\;R_{all} = 0.069$ and S = 5.45 for 3120 observed reflections. Both cation and anion complexes are essentially planar and have dihedral angles of 6.3(6) and $57.06(6)^{\circ}$ between their planes. The planar complex anions are sandwiched between slightly bent cations. The interplanar separations of two triads are 3.328 and 3.463 $\AA$, respectively. The triads are stacked along b-axis, but their orientations are different based on dihedral angle $59.08(9)^{\circ}$ of two complex anions.

  • PDF

The Dependence of the Wedge Factor with the Variation of High Energy Photon Beam Fluences (고에너지 광자선의 선속 변화에 따른 쐬기인자의 의존성)

  • 오영기;윤상모;김재철;박인규;김성규
    • Progress in Medical Physics
    • /
    • v.11 no.1
    • /
    • pp.1-18
    • /
    • 2000
  • For wedged photon beams, the variation of the wedge factor with field size was reported by several authors. However, until now such variation with field size had not been explained quantitatively. Therefore, the variation of the wedge factor was investigated by measuring outputs with field sizes increasing from 4 cm $\times$ 4 cm to 25 cm $\times$ 25 cm for open and wedged 6 and 10MV X-ray beams. The relative outputs for wedged fields to 10 cm $\times$ 10 cm have been obtained. The results show the Increase of the wedge factor caused by the change in fluence of high energy Photon beam with field size, up to 8.0% for KD77-6MV X-ray beam. This increase could be explained as a linear function of the irradiated wedge volume except small field size up to about 10 cm. In the cases of the narrow rectangular beam parallel to the wedge direction, the wedge factor decreases slightly with increasing field size up to about 10-15 cm due to a relatively reduced photon fluence from the change of the wedge thickness. We could explain the causes of a wedge factor variation with field size as the fluences of primary photon passed throughout the wedge, contributing to the dose at the central beam axis and that the fluences were affected by the gradient of the wedge with the change of field size. For clinical use, the formula developed to describe the wedge factor variation with field size has been corrected.

  • PDF

Optimization of Dose Distribution for High Dose Rate Intraluminal Therapy (고선량율 관내 방사선치료를 위한 종양선량분포의 최적화에 대한 연구)

  • Chu, Sung-Sil;Kim, Gwi-Eon;Loh, Juhn-Kyu
    • Radiation Oncology Journal
    • /
    • v.12 no.2
    • /
    • pp.243-252
    • /
    • 1994
  • The use of high dose rate remote afterloading system for the treatment of intraluminal lesions necessitates the need for a more accurate of dose distributions around the high intensity brachytherapy sources, doses are often prescribed to a distance of few centimeters from the linear source, and in this range the dose distribution is very difficult to assess. Accurated and optimized dose calculation with stable numerical algorithms by PC level computer was required to treatment intraluminal lesions by high dose rate brachytherapy system. The exposure rate from sources was calculated with Sievert integral and dose rate in tissue was calculated with Meisberger equation, An algorithm for generating a treatment plan with optimized dose distribution was developed for high dose rate intraluminal radiotherapy. The treatment volume becomes the locus of the constrained target surface points that is the specified radial distance from the source dwelling positions. The treatment target volume may be alternately outlined on an x-ray film of the implant dummy sources. The routine used a linear programming formulism to compute which dwell time at each position to irradiate the constrained dose rate at the target surface points while minimizing the total volume integrated dose to the patient. The exposure rate and the dose distribution to be confirmed the result of calculation with algorithm were measured with film dosimetry, TLD and small size ion chambers.

  • PDF

Microstructure and mechanical properties in hot-forged liquid-phase-sintered silicon carbide (고온단조에 의한 액상소결 탄화규소의 미세구조 및 기계적 특성)

  • Roh, Myong-Hoon;Kim, Won-Joong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.6
    • /
    • pp.1943-1948
    • /
    • 2010
  • Two kind of $\beta$-SiC powders of different particle sizes (${\sim}1.7\;{\mu}m$ and ${\sim}30\;nm$), containing 7 wt% $Y_2O_3$, 2 wt% $Al_2O_3$ and 1 wt% MgO as sintering additives, were prepared by hot pressing at $1800^{\circ}C$ for 1 h under applied pressures, and then were hot-forged at $1950^{\circ}C$ for 6 h under 40 MPa in argon. All the hot-pressed specimens consisted of equiaxed grains and were developed grain growth after hot-forging. The smaller starting powder was developed the finer microstructure. The microstructures on the surfaces parallel and perpendicular to the pressing direction of the hot-forged SiC were similar to each other, and no texture development was observed because of the lack of massive $\beta$ to $\sigma$ phase transformation of SiC. The fracture toughness (${\sim}3.9\;MPa{\cdot}m^{1/2}$), hardness (~ 25.2 GPa) and flexural strength (480 MPa) of hot-forged SiC using larger starting powder were higher than those of the other.

The Shape of $YBa_2 Cu_3O_x$ Grains in the Liquid Matrix and the Effect of Atmosphere on It (액상 기지에 분산된 $YBa_2 Cu_3O_x$결정립의 형태와 분위기의 영향)

  • 서정훈;윤덕용
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.1 no.2
    • /
    • pp.15-22
    • /
    • 1991
  • When $YBa_2Cu_3Ox$ is liquid-phase sintered at $925^{\circ}C$ in $O_2$ for 16h, liquid pockets are entrapped within the grains. The liquid pockets show a thin parallelepiped shape with short edge lengths in the c axis, even after reannealing $925^{\circ}C$ in $O_2$ for 16h. All grains in contact with the liquid matrix show the same shape. However, when liquid-phase sintered at 925^{circ}C in $N_2$ for 16h, the grains dispersed in the liquid matrix show a thicker parallelepiped shape than in $O_2$, and their shape remains intact even after reannealing at $925^{\circ}C$ in $N_2$ for 16h. The effect of atmosphere on the grain shape is expected to be due to the variation of oxygen vacancy concentraion in $CuO_2$ plane of tetragonal unit cell.

  • PDF

KNEE: Basic Science and Injury of Bone (슬관절 주위 글격의 기초과학 및 스포츠 손상)

  • Kim Hee-Chun
    • Journal of Korean Orthopaedic Sports Medicine
    • /
    • v.2 no.2
    • /
    • pp.77-81
    • /
    • 2003
  • Purpose: The biomechanics and kinematics of knee joint were reviewed in this article. And then the common sports injuries were presented. Anatomy and Kinetics: None of the pairs of bearing surfaces in the knee joint is exactly congruent This allows the knee six degrees of freedom of motion. Tibiofemoral Kinematics: In flexion and extension, the axis of motion is not perpendicular to the medial-lateral plane of the joint, nor is it perpendicular to the axis of longitudinal rotation. This results in coupled varus angulation and internal rotation with flexion and in valgus angulation and external rotation with extension. Patellofemoral Articulation: Loads across the patellofemoral joint are indirectly related to the angle of knee flexion and directly related to the force generated within the quadriceps mechanism. Fractures of the Patella: Nonoperative treatment is indicated if the extensor mechanism is intact and if displacement of fragment is minimal. The specific type of internal fixation depends on the fracture pattern. It is important to repair retinaculum. Acute and Recurrent Patellar Instability: The degree of dysplasia and the extent of the instability play a large part in determining the success of nonoperative treatment. Patients who experience recurrent dislocations and patients with major anatomic variations require surgery to minimize their instability. Sports Injuries in School-age Atheletes: Patellar pain in young athletes groups a number of conditions, including Idiopathic Adolescent Anterior Knee Pain, Osgood- Schlatter Disease, and Sinding-Larsen-Johansson Disease.

  • PDF

Stability Analysis of Multiple Thermal Energy Storage Caverns Using a Coupled Thermal-Mechanical Model (열-역학적 연계해석 모델을 이용한 다중 열저장공동 안정성 분석)

  • Kim, Hyunwoo;Park, Dohyun;Park, Eui-Seob;Sunwoo, Choon
    • Tunnel and Underground Space
    • /
    • v.24 no.4
    • /
    • pp.297-307
    • /
    • 2014
  • Cavern Thermal Energy Storage system stores thermal energy in caverns to recover industrial waste heat or avoid the sporadic characteristics of renewable-energy resources, and its advantages include high injection-and-extraction powers and the flexibility in selecting a storage medium. In the present study, the structural stability of rock mass pillar between these silo-type storage caverns was assessed using a coupled thermal-mechanical model in $FLAC^{3D}$. The results of numerical simulations showed that thermal stresses due to long-term storage depended on pillar width and had significant effect on the pillar stability. A sensitivity analysis of main factors indicated that the influence on the pillar stability increased in the order cavern depth < pillar width < in situ condition. It was suggested that two identical caverns should be separated by at least one diameter of the cavern and small-diameter shaft neighboring the cavern should be separated by more than half of the cavern diameter. Meanwhile, when the line of centers of two caverns was parallel to the direction of maximum horizontal principal stress, the shielding effect of the caverns could minimize an adverse effect caused by a large horizontal stress.